Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
website contera

Prof Sonia Antoranz Contera

Professor of Biological Physics

Sub department

  • Condensed Matter Physics
Sonia.AntoranzContera@physics.ox.ac.uk
Telephone: 01865 (2)72269
Clarendon Laboratory, room 208
  • About
  • Publications
Conversation on physics bioinspired materials and the future of architecture
link to video of conversation with architect Amanda Levete on biophysics and the future of architecture

Single-molecule motion control

(2023)

Authors:

Divyam Neer Verma, KV Chinmaya, Jan Heck, G Mohan Rao, Sonia Contera, Moumita Ghosh, Siddharth Ghosh
More details from the publisher

Transcending Markov: non-Markovian rate processes of thermosensitive TRP ion channels

Royal Society Open Science Royal Society 10:8 (2023) 230984

Authors:

Yuval Ben-Abu, Stephen J Tucker, Sonia Contera

Abstract:

The Markov state model (MSM) is a popular theoretical tool for describing the hierarchy of time scales involved in the function of many proteins especially ion channel gating. An MSM is a particular case of the general non-Markovian model, where the rate of transition from one state to another does not depend on the history of state occupancy within the system, i.e. it only includes reversible, non-dissipative processes. However, an MSM requires knowledge of the precise conformational state of the protein and is not predictive when those details are not known. In the case of ion channels, this simple description fails in real (non-equilibrium) situations, for example when local temperature changes, or when energy losses occur during channel gating. Here, we show it is possible to use non-Markovian equations (i.e. offer a general description that includes the MSM as a particular case) to develop a relatively simple analytical model that describes the non-equilibrium behaviour of the temperature-sensitive transient receptor potential (TRP) ion channels, TRPV1 and TRPM8. This model accurately predicts asymmetrical opening and closing rates, infinite processes and the creation of new states, as well as the effect of temperature changes throughout the process. This approach therefore overcomes the limitations of the MSM and allows us to go beyond a mere phenomenological description of the dynamics of ion channel gating towards a better understanding of the physics underlying these processes.
More details from the publisher
Details from ORA
More details
More details

Nanoscale rheology: Dynamic Mechanical Analysis over a broad and continuous frequency range using Photothermal Actuation Atomic Force Microscopy

(2023)

Authors:

Alba R Piacenti, Casey Adam, Nicholas Hawkins, Ryan Wagner, Jacob Seifert, Yukinori Taniguchi, Roger Proksch, Sonia Contera
More details from the publisher

Action of the general anaesthetic isoflurane reveals coupling between viscoelasticity and electrophysiological activity in individual neurons

Communications Physics Springer Nature 6:1 (2023) 174

Authors:

Casey Adam, Celine Kayal, Ari Ercole, Sonia Antoranz Contera, Hua Ye, Antoine Jérusalem

Abstract:

General anaesthetics are widely used for their analgesic, immobilising, and hypnotic effects. The mechanisms underlying these effects remain unclear, but likely arise from alterations to cell microstructure, and potentially mechanics. Here we investigate this hypothesis using a custom experimental setup combining calcium imaging and nanoindentation to quantify the firing activity and mechanical properties of dorsal root ganglion-derived neurons exposed to a clinical concentration of 1% isoflurane gas, a halogenated ether commonly used in general anaesthesia. We found that cell viscoelasticity and functional activity are simultaneously and dynamically altered by isoflurane at different stages of exposure. Particularly, cell firing count correlated linearly with the neuronal loss tangent, the ratio of mechanical energy dissipation and storage by the cell. Our results demonstrate that anaesthetics affect cells as a whole, reconciling seemingly contradictory theories of how anaesthetics operate, and highlight the importance of considering cell mechanics in neuronal functions, anaesthesia, and clinical neuroscience in general.
More details from the publisher
Details from ORA
More details

Electrochemical and nanostructural characterization of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films as coatings for neural electrodes

ACS Applied Polymer Materials American Chemical Society 5:7 (2023) 5555-5566

Authors:

Yuanmin Zhang, Yuqi Chen, Sonia Contera, Richard G Compton

Abstract:

Poly(3,4-ethylenedioxythiophene) (PEDOT), a well-characterized conducting polymer, has been applied for coating metal neural electrodes to improve their stimulating or recording performance. The coated electrodes possess advantages in better neuron attachment, lower impedance, and larger capacitance compared to the bare metal substrate due to the biocompatibility and porous surface of the polymer. However, the PEDOT-coated electrodes have frequently reported issues associated with mechanical instability, such as cracking and delamination. Solving this problem is crucial for stimulating electrodes, whereas a massive film is unnecessary for recording purposes. Moreover, the thickness control for the latter has rarely been investigated. In this work, we systematically studied and characterized poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with cyclic voltammetry and atomic force microscopy (AFM) to evaluate the electropolymerization of PEDOT:PSS from the basis and analyze the surface morphology for a range of deposition times. The polymerization potential was obtained, and the deposition charge density was optimized for recording neural electrodes. In addition, high-resolution AFM height and phase images reveal the heterogeneity of the polymer surface. The modified electrode was also tested for its electrochemical performance in a small potential window with both a standard electrochemical cell setup and stainless steel microscrews. The results showed that despite a shift of potential (0.42 V) due to the change of setup, the electrode functions well in the capacitive region without triggering redox reactions.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet