Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Arzhang's natural habitat

Prof Arzhang Ardavan

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum spin dynamics
arzhang.ardavan@physics.ox.ac.uk
Telephone: 01865 (2)72366
Clarendon Laboratory, room 267
Personal website
  • About
  • Publications

Electron spin ensemble strongly coupled to a three-dimensional microwave cavity

APPLIED PHYSICS LETTERS 98:25 (2011) ARTN 251108

Authors:

Eisuke Abe, Hua Wu, Arzhang Ardavan, John JL Morton
More details from the publisher

Photochemical stability of N@C60 and its pyrrolidine derivatives

CHEMICAL PHYSICS LETTERS 508:4-6 (2011) 187-190

Authors:

Guoquan Liu, Andrei N Khlobystov, Arzhang Ardavan, G Andrew D Briggs, Kyriakos Porfyrakis
More details from the publisher

Electron paramagnetic resonance investigation of purified catalyst-free single-walled carbon nanotubes.

ACS Nano 4:12 (2010) 7708-7716

Authors:

Mujtaba Zaka, Yasuhiro Ito, Huiliang Wang, Wenjing Yan, Alex Robertson, Yimin A Wu, Mark H Rümmeli, David Staunton, Takeshi Hashimoto, John JL Morton, Arzhang Ardavan, G Andrew D Briggs, Jamie H Warner

Abstract:

Electron paramagnetic resonance of single-walled carbon nanotubes (SWCNTs) has been bedevilled by the presence of paramagnetic impurities. To address this, SWCNTs produced by laser ablation with a nonmagnetic PtRhRe catalyst were purified through a multiple step centrifugation process in order to remove amorphous carbon and catalyst impurities. Centrifugation of a SWCNT solution resulted in sedimentation of carbon nanotube bundles containing clusters of catalyst particles, while isolated nanotubes with reduced catalyst particle content remained in the supernatant. Further ultracentrifugation resulted in highly purified SWCNT samples with a narrow diameter distribution and almost no detectable catalyst particles. Electron paramagnetic resonance (EPR) signals were detected only for samples which contained catalyst particles, with the ultracentrifuged SWCNTs showing no EPR signal at X-band (9.4 GHz) and fields < 0.4 T.
More details from the publisher
More details

Electron paramagnetic resonance investigation of purified catalyst-free single-walled carbon nanotubes

ACS Nano 4:12 (2010) 7708-7716

Authors:

M Zaka, Y Ito, H Wang, W Yan, A Robertson, YA Wu, MH Rümmeli, D Staunton, T Hashimoto, JJL Morton, A Ardavan, GAD Briggs, JH Warner

Abstract:

Electron paramagnetic resonance of single-walled carbon nanotubes (SWCNTs) has been bedevilled by the presence of paramagnetic impurities. To address this, SWCNTs produced by laser ablation with a nonmagnetic PtRhRe catalyst were purified through a multiple step centrifugation process in order to remove amorphous carbon and catalyst impurities. Centrifugation of a SWCNT solution resulted in sedimentation of carbon nanotube bundles containing clusters of catalyst particles, while isolated nanotubes with reduced catalyst particle content remained in the supernatant. Further ultracentrifugation resulted in highly purified SWCNT samples with a narrow diameter distribution and almost no detectable catalyst particles. Electron paramagnetic resonance (EPR) signals were detected only for samples which contained catalyst particles, with the ultracentrifuged SWCNTs showing no EPR signal at X-band (9.4 GHz) and fields < 0.4 T. © 2010 American Chemical Society.
More details from the publisher

Quantum interference between photo-excited states in a solid-state mott insulator

Optics InfoBase Conference Papers (2010)

Authors:

S Wall, D Brida, SR Clark, HP Ehrke, D Jaksch, A Ardavan, S Bonora, H Uemura, Y Takahashi, T Hasegawa, H Okamoto, G Cerullo, A Cavalleri

Abstract:

By exciting with sub-10-fs 1.6-μm pulses the quasi-one-dimensional Mott insulator ETF2TCNQ, we observe prompt collapse of the Mott gap modulated by 24-THz oscillations of the gap, which are assigned to quantum interference between holon-doublon excitations. © 2010 Optical Society of America.

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • Current page 21
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet