Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Arzhang's natural habitat

Prof Arzhang Ardavan

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum spin dynamics
arzhang.ardavan@physics.ox.ac.uk
Telephone: 01865 (2)72366
Clarendon Laboratory, room 267
Personal website
  • About
  • Publications

Thermal activation between Landau levels in the organic superconductor $\beta''$-(BEDT-TTF)$_{2}$SF$_{5}$CH$_{2}$CF$_{2}$SO$_{3}$

(2001)

Authors:

M-S Nam, A Ardavan, JA Symington, J Singleton, N Harrison, CH Mielke, JA Schlueter, RW Winter, GL Gard
More details from the publisher

Test for interlayer coherence in a quasi-two-dimensional superconductor

(2001)

Authors:

John Singleton, PA Goddard, A Ardavan, N Harrison, SJ Blundell, JA Schlueter, AM Kini
More details from the publisher

A quantum-mechanical model of quasi-one-dimensional conductors

SYNTHETIC MET 120:1-3 (2001) 1009-1010

Authors:

A Ardavan, J Singleton, SJ Blundell

Abstract:

We present a model of a quasi-one-dimensional (Q1D) conductor with weak dispersion in the direction perpendicular to the chains in a magnetic field. Finite-energy electric dipole transitions between the eigenstates of the system constitute Fermi-surface traversal resonance, a Q1D analogue of cyclotron resonance. We extend the model to describe a (TMTSF)(2)X-like material, with dispersion in two directions perpendicular to the chains, and find that for certain orientations of the magnetic field large degeneracies occur between the magnetic-field induced states. These are angles at which maxima are observed experimentally in the d.c. conductivity, and thus we explain one class of angle-dependent magnetoresistance oscillations (AMRO) in terms of zero-energy electric dipole transitions between magnetic-field induced states.
More details from the publisher

Interplane corrugations in the quasi-one-dimensional Fermi surface sections of kappa-(BEDT-TTF)(2)Cu(SCN)(2)

SYNTHETIC MET 120:1-3 (2001) 953-954

Authors:

E Rzepniewski, RS Edwards, JM Schrama, A Ardavan, J Singleton, M Kurmoo, P Day

Abstract:

We identify two interplane corrugations in the quasi-one-dimensional Fermi surface sections of the organic superconductor kappa-(BEDT-TTF)(2)Cu(SCN)(2). The warping directions are 17.3 degrees and -19.4 degrees relative to the crystal a* axis.
More details from the publisher

Numerical simulation of angle dependent magnetoresistances oscillations in alpha-(BEDT-TTF)(2)KHg(SCN)(4)

SYNTHETIC MET 120:1-3 (2001) 983-984

Authors:

MS Nam, A Ardavan, SJ Blundell, J Singleton

Abstract:

We present a numerical simulation of angle dependent magnetoresistances oscillations(AMROs) in alpha-(BEDT-TTF)(2)KHg(SCN)(4). The nesting vector of the density wave and the magnetic breakdowngap in the low-temperature, low-magnetic-field state (LTLF) are constrained by simulations of quasi-one-dimensional (Q1D) AMRO. Quasi-two-dimensional (Q2D) AMRO simulations for the high-temperature, high-magnetic-field state (HTHF) allow the precise derivation of an ellipticity of the Q2D Fermi surface. Simulations of the field dependent AMRO demonstrate the gradual evolution of the FS from LTLF to HTHF states toward the kink transition at 23 T.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 68
  • Page 69
  • Page 70
  • Page 71
  • Current page 72
  • Page 73
  • Page 74
  • Page 75
  • Page 76
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet