Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof Steven Balbus FRS, FInstP

Emeritus Savilian Professor

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Pulsars, transients and relativistic astrophysics
steven.balbus@physics.ox.ac.uk
  • About
  • Publications

Viscous shear instability in weakly magnetized, dilute plasmas

ASTROPHYSICAL JOURNAL 616:2 (2004) 857-864
More details from the publisher

Gap formation by planets in turbulent protostellar disks

Astrophysical Journal 589:1 I (2003) 543-555

Authors:

WF Winters, SA Balbus, JF Hawley

Abstract:

The processes of planet formation and migration depend intimately on the interaction between planetesimals and the gaseous disks in which they form. The formation of gaps in the disk can severely limit the mass of the planet and its migration toward the protostar. We investigate the process of gap formation through magnetohydrodynamic simulations in which internal stress arises self-consistently from turbulence generated by the magnetorotational instability. The simulations investigate three different planetary masses and two disk temperatures to bracket the tidal (thermal) and viscous gap opening conditions. The results are in general qualitative agreement with previous simulations of gap formation but show significant differences. In the presence of MHD turbulence, the gaps produced are shallower and asymmetrically wider than those produced with pure hydrodynamics. The rate of gap formation is also slowed, with accretion occurring across the developing gap. Viscous hydrodynamics does not adequately describe the evolution, however, because planets capable of producing gaps also may be capable of affecting the level of MHD turbulence in different regions of the disk.
More details from the publisher

Chaos in turbulence driven by the magnetorotational instability

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 340:2 (2003) 519-524

Authors:

WF Winters, SA Balbus, JF Hawley
More details from the publisher
Details from ArXiV

Enhanced angular momentum transport in accretion disks

ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS 41 (2003) 555-597
More details from the publisher
Details from ArXiV

Gap formation by planets in turbulent protostellar disks

ASTROPHYSICAL JOURNAL 589:1 (2003) 543-555

Authors:

WF Winters, SA Balbus, JF Hawley
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet