The dynamical structure of nonradiative black hole accretion flows
ASTROPHYSICAL JOURNAL 573:2 (2002) 738-748
The ionization fraction in α models of protoplanetary discs
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 329:1 (2002) 18-28
A magnetohydrodynamic nonradiative accretion flow in three dimensions
Astrophysical Journal 554:1 PART 2 (2001)
Abstract:
We present a global magnetohydrodynamic (MHD) three-dimensional simulation of a nonradiative accretion flow originating in a pressure-supported torus. The evolution is controlled by the magnetorotational instability, which produces turbulence. The flow forms a nearly Keplerian disk. The total pressure scale height in this disk is comparable to the vertical size of the initial torus. Gas pressure dominates near the equator; magnetic pressure is more important in the surrounding atmosphere. A magnetically dominated bound outflow is driven from the disk. The accretion rate through the disk exceeds the final rate into the hole, and a hot torus forms inside 10rg. Hot gas, pushed up against the centrifugal barrier and confined by magnetic pressure, is ejected in a narrow, unbound, conical outflow. The dynamics are controlled by magnetic turbulence, not thermal convection, and a hydrodynamic α-model is inadequate to describe the flow. The limitations of two-dimensional MHD simulations are also discussed.Convective and rotational stability of a dilute plasma
Astrophysical Journal 562:2 PART II (2001) 909-917
Abstract:
The stability of a dilute plasma to local convective and rotational disturbances is examined. A subthermal magnetic field and finite thermal conductivity along the field lines are included in the analysis. Stability criteria similar in form to the classical Høiland inequalities are found, but with angular velocity gradients replacing angular momentum gradients, and temperature gradients replacing entropy gradients. These criteria are indifferent to the properties of the magnetic field and to the magnitude of the thermal conductivity. Angular velocity gradients and temperature gradients are both free energy sources; it is not surprising that they are directly relevant to the stability of the gas. Magnetic fields and thermal conductivity provide the means by which these sources can be tapped. Previous studies have generally been based upon the classical Holland criteria, which are inappropriate for magnetized, dilute astrophysical plasmas. In sharp contrast to recent claims in the literature, the new stability criteria demonstrate that marginal flow stability is not a fundamental property of accreting plasmas thought to be associated with low-luminosity X-ray sources. © 2001. The American Astronomical Society. All rights reserved.A magnetohydrodynamic nonradiative accretion flow in three dimensions
ASTROPHYSICAL JOURNAL 554:1 (2001) L49-L52