Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Deaglan Bartlett

Eric and Wendy Schmidt AI in Science Postdoctoral Fellow

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Galaxy formation and evolution
deaglan.bartlett@physics.ox.ac.uk
Denys Wilkinson Building, room 532G
arxiv.org/a/bartlett_d_1
orcid.org/0000-0001-9426-7723
www.aquila-consortium.org
  • About
  • Publications

No evidence for p- or d-wave dark matter annihilation from local large-scale structure

ArXiv 2304.10301 (2023)

Authors:

Andrija Kostić, Deaglan J Bartlett, Harry Desmond
Details from ArXiV

Priors for symbolic regression

ArXiv 2304.06333 (2023)

Authors:

Deaglan J Bartlett, Harry Desmond, Pedro G Ferreira
Details from ArXiV

On the functional form of the radial acceleration relation

(2023)

Authors:

Harry Desmond, Deaglan J Bartlett, Pedro G Ferreira
More details from the publisher
More details
Details from ArXiV

Exhaustive Symbolic Regression

(2022)

Authors:

Deaglan J Bartlett, Harry Desmond, Pedro G Ferreira
More details from the publisher
Details from ArXiV

Constraints on dark matter annihilation and decay from the large-scale structure of the nearby Universe

Physical Review D 106:10 (2022)

Authors:

DJ Bartlett, A Kostić, H Desmond, J Jasche, G Lavaux

Abstract:

Decaying or annihilating dark matter particles could be detected through gamma-ray emission from the species they decay or annihilate into. This is usually done by modeling the flux from specific dark matter-rich objects such as the Milky Way halo, Local Group dwarfs, and nearby groups. However, these objects are expected to have significant emission from baryonic processes as well, and the analyses discard gamma-ray data over most of the sky. Here we construct full-sky templates for gamma-ray flux from the large-scale structure within ∼200 Mpc by means of a suite of constrained N-body simulations (csiborg) produced using the Bayesian Origin Reconstruction from Galaxies algorithm. Marginalizing over uncertainties in this reconstruction, small-scale structure, and parameters describing astrophysical contributions to the observed gamma-ray sky, we compare to observations from the Fermi Large Area Telescope to constrain dark matter annihilation cross sections and decay rates through a Markov chain Monte Carlo analysis. We rule out the thermal relic cross section for s-wave annihilation for all mχ7 GeV/c2 at 95% confidence if the annihilation produces gluons or quarks less massive than the bottom quark. We infer a contribution to the gamma-ray sky with the same spatial distribution as dark matter decay at 3.3σ. Although this could be due to dark matter decay via these channels with a decay rate Γ≈6×10-28 s-1, we find that a power-law spectrum of index p=-2.75-0.46+0.71, likely of baryonic origin, is preferred by the data.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet