Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Deaglan Bartlett

Eric and Wendy Schmidt AI in Science Postdoctoral Fellow

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Galaxy formation and evolution
deaglan.bartlett@physics.ox.ac.uk
Denys Wilkinson Building, room 532G
arxiv.org/a/bartlett_d_1
orcid.org/0000-0001-9426-7723
www.aquila-consortium.org
  • About
  • Publications

The scatter in the galaxy-halo connection: a machine learning analysis

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 514:3 (2022) 4026-4045

Authors:

Richard Stiskalek, Deaglan J Bartlett, Harry Desmond, Dhayaa Anbajagane
More details from the publisher
Details from ORA
More details
Details from ArXiV

Improved cosmological fits with quantized primordial power spectra

PHYSICAL REVIEW D American Physical Society (APS) 105:8 (2022) 83515

Authors:

Dj Bartlett, Wj Handley, An Lasenby

Abstract:

We observationally examine cosmological models based on primordial power spectra with quantized wave vectors. Introducing a linearly quantized power spectrum with k0=3.225×10-4 Mpc-1 and spacing Δk=2.257×10-4 Mpc-1 provides a better fit to the Planck 2018 observations than the concordance baseline, with Δχ2=-8.55. Extending the results of Lasenby et al. [preceding paper, Perturbations and the future conformal boundary, Phys. Rev. D 105, 083514 (2022)PRVDAQ2470-001010.1103/PhysRevD.105.083514], we show that the requirement for perturbations to remain finite beyond the future conformal boundary in a universe containing dark matter and a cosmological constant results in a linearly quantized primordial power spectrum. It is found that the infrared cutoffs for this future conformal boundary quantized cosmology do not provide cosmic microwave background power spectra compatible with observations, but future theories may predict more observationally consistent quantized spectra.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Perturbations and the future conformal boundary

PHYSICAL REVIEW D American Physical Society (APS) 105:8 (2022) 83514

Authors:

An Lasenby, Wj Handley, Dj Bartlett, Cs Negreanu

Abstract:

The concordance model of cosmology predicts a universe which finishes in a finite amount of conformal time at a future conformal boundary. We show that for particular cases we study, the background variables and perturbations may be analytically continued beyond this boundary and that the "end of the universe"is not necessarily the end of their physical development. Remarkably, these theoretical considerations of the end of the universe might have observable consequences today: perturbation modes consistent with these boundary conditions have a quantized power spectrum which may be relevant to features seen in the large scale cosmic microwave background. Mathematically these cosmological models may either be interpreted as a palindromic universe mirrored in time, a reflecting boundary condition, or a double cover, but are identical with respect to their observational predictions and stand in contrast to the predictions of conformal cyclic cosmologies.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Constraints on quantum gravity and the photon mass from gamma ray bursts

Physical Review D American Physical Society 104:10 (2021) 103516

Authors:

Dj Bartlett, H Desmond, Pg Ferreira, J Jasche

Abstract:

Lorentz invariance violation in quantum gravity (QG) models or a nonzero photon mass, mγ, would lead to an energy-dependent propagation speed for photons, such that photons of different energies from a distant source would arrive at different times, even if they were emitted simultaneously. By developing source-by-source, Monte Carlo-based forward models for such time delays from gamma ray bursts, and marginalizing over empirical noise models describing other contributions to the time delay, we derive constraints on mγ and the QG length scale, ℓQG, using spectral lag data from the BATSE satellite. We find mγ<4.0×10-5 h eV/c2 and ℓQG<5.3×10-18 h GeV-1 at 95% confidence, and demonstrate that these constraints are robust to the choice of noise model. The QG constraint is among the tightest from studies which consider multiple gamma ray bursts and the constraint on mγ, although weaker than from using radio data, provides an independent constraint which is less sensitive to the effects of dispersion by electrons.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Constraints on equivalence principle violation from gamma ray bursts

Physical Review D American Physical Society 104 (2021) 084025

Authors:

Deaglan J Bartlett, Dexter Bergsdal, Harry Desmond, Pedro G Ferreira, Jens Jasche

Abstract:

Theories of gravity that obey the Weak Equivalence Principle have the same Parametrised Post-Newtonian parameter $\gamma$ for all particles at all energies. The large Shapiro time delays of extragalactic sources allow us to put tight constraints on differences in $\gamma$ between photons of different frequencies from spectral lag data, since a non-zero $\Delta \gamma$ would result in a frequency-dependent arrival time. The majority of previous constraints have assumed that the Shapiro time delay is dominated by a few local massive objects, although this is a poor approximation for distant sources. In this work we consider the cosmological context of these sources by developing a source-by-source, Monte Carlo-based forward model for the Shapiro time delays by combining constrained realisations of the local density field using the Bayesian origin reconstruction from galaxies algorithm with unconstrained large-scale modes. Propagating uncertainties in the density field reconstruction and marginalising over an empirical model describing other contributions to the time delay, we use spectral lag data of Gamma Ray Bursts from the BATSE satellite to constrain $\Delta \gamma < 2.1 \times 10^{-15}$ at $1 \sigma$ confidence between photon energies of $25 {\rm \, keV}$ and $325 {\rm \, keV}$.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet