Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
A CHANDRA image of the supernova remnant Cas A superimposed on the Gemini laser at the UK Central Laser Facility

The plasma physics of supernova remnants in astrophysics is similar to plasma physics of solids irradiated with powerful lasers in the laboratory.

Credit: 1) The Royal Society (personal photo) 2) NASA/CXC/MIT/UMass Amherst/M.D.Stage et al. (Cas A) 3) STFC (laser)

Tony Bell FRS

Academic Visitor

Research theme

  • Particle astrophysics & cosmology
  • Plasma physics

Sub department

  • Atomic and Laser Physics
Tony.Bell@physics.ox.ac.uk
Telephone: 01865 (2)72210
Clarendon Laboratory, room 316.4
  • About
  • Publications

PROPER MOTIONS AND TEMPORAL FLUX CHANGES OF COMPACT FEATURES IN CASSIOPEIA A AT 5 GHZ

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 179:3 (1977) 573-586
More details from the publisher

NEW RADIO MAP OF CASSIOPEIA A AT 5 GHZ

NATURE 257:5526 (1975) 463-465

Authors:

AR BELL, SF GULL, S KENDERDINE
More details from the publisher

Evidence that particle acceleration in hotspots of FR II galaxies is not constrained by synchrotron cooling

Authors:

AT Araudo, Anthony Bell, Katherine Blundell

Abstract:

We study the hotspots of powerful radiogalaxies, where electrons accelerated at the jet termination shock emit synchrotron radiation. The turnover of the synchrotron spectrum is typically observed between infrared and optical frequencies, indicating that the maximum energy of non-thermal electrons accelerated at the shock is ~TeV for a canonical magnetic field of ~100 micro Gauss. We show that this maximum energy cannot be constrained by synchrotron losses as usually assumed, unless the jet density is unreasonably large and most of the jet upstream energy goes to non-thermal particles. We test this result by considering a sample of hotspots observed at radio, infrared and optical wavelengths.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 24
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • Current page 32

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet