Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Test image

Katherine Blundell OBE

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Plasma physics

Sub department

  • Astrophysics

Research groups

  • Global Jet Watch
  • Pulsars, transients and relativistic astrophysics
Katherine.Blundell@physics.ox.ac.uk
Telephone: 01865 (2)73308
Denys Wilkinson Building, room 707
www.GlobalJetWatch.net
orcid.org/0000-0001-8509-4939
  • About
  • Research
  • Gresham Professorship
  • Books
  • Teaching
  • Prizes
  • Publications

The Global Jet Watch

Radio image of the microquasar SS433
The micro quasar SS433
Link to the site

Tracing the colliding winds of η Carinae in He i

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 526:4 (2023) 6155-6167

Authors:

David Grant, Katherine Blundell, Emma Godden, Steven Lee, Chris McCowage
More details from the publisher
More details

The circumbinary rings of GG Carinae: indications of disc eccentricity growth in the B[e] supergiant’s atomic emission lines

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 509:2 (2021) 1720-1735

Authors:

Augustus Porter, Katherine Blundell, Steven Lee
More details from the publisher
More details

Probabilistic orbits and dynamical masses of emission-line binaries

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 509:1 (2021) 367-379

Authors:

David Grant, Katherine Blundell

Abstract:

The observed orbits of emission-line stars may be affected by systematics owing to their broad emission lines being formed in complex and extended environments. This is problematic when orbital parameter probability distributions are estimated assuming radial-velocity data are solely comprised of Keplerian motion plus Gaussian white noise, leading to overconfident and inaccurate orbital solutions, with implications for the inferred dynamical masses and hence evolutionary models. We present a framework in which these systems can be meaningfully analysed. We synthesize benchmark data sets, each with a different and challenging noise formulation, for testing the performance of different algorithms. We make these data sets freely available with the aim of making model validation an easy and standardized practice in this field. Next, we develop an application of Gaussian processes to model the radial-velocity systematics of emission-line binaries, named marginalized GP⁠. We benchmark this algorithm, along with current standardized algorithms, on the synthetic data sets and find our marginalized GP algorithm performs significantly better than the standard algorithms for data contaminated by systematics. Finally, we apply the marginalized GP algorithm to four prototypical emission-line binaries: Eta Carinae, GG Carinae, WR 140, and WR 133. We find systematics to be present in several of these case studies; and consequently, the predicted orbital parameter distributions, and dynamical masses, are modified from those previously determined.
More details from the publisher
Details from ORA
More details
More details

Probabilistic orbits and dynamical masses of emission-line binaries

(2021)

Authors:

David Grant, Katherine Blundell
More details from the publisher
Details from ArXiV

The circumbinary rings of GG Carinae: indications of disc eccentricity growth in the B[e] supergiant's atomic emission lines

(2021)

Authors:

Augustus Porter, Katherine Blundell, Steven Lee
More details from the publisher
Details from ArXiV

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet