The rest-frame UV luminosity function at z≃4 : a significant contribution of AGN to the bright-end of the galaxy population
Monthly Notices of the Royal Astronomical Society Oxford University Press 494:2 (2020) 1771-1783
Abstract:
We measure the rest-frame UV luminosity function (LF) at z ∼ 4 self-consistently over a wide range in absolute magnitude (−27 . MUV . −20). The LF is measured with 46,904 sources selected using a photometric redshift approach over ∼ 6 deg2 of the combined COSMOS and XMM-LSS fields. We simultaneously fit for both AGN and galaxy LFs using a combination of Schechter or Double Power Law (DPL) functions alongside a single power law for the faint-end slope of the AGN LF. We find a lack of evolution in the shape of the bright-end of the LBG component when compared to other studies at z ' 5 and evolutionary recipes for the UV LF. Regardless of whether the LBG LF is fit with a Schechter function or DPL, AGN are found to dominate at MUV < −23.5. We measure a steep faint-end slope of the AGN LF with αAGN = −2.09+0.35 −0.38 (−1.66+0.29 −0.58) when fit alongside a Schechter function (DPL) for the galaxies. Our results suggest that if AGN are morphologically selected it results in a bias to lower number densities. Only by considering the full galaxy population over the transition region from AGN to LBG domination can an accurate measurement of the total LF be attained.A lack of evolution in the very bright-end of the galaxy luminosity function from z ≃ 8-10
Monthly Notices of the Royal Astronomical Society Oxford University Press 493:2 (2020) 2059-2084
Abstract:
We utilize deep near-infrared survey data from the UltraVISTA fourth data release (DR4) and the VIDEO survey, in combination with overlapping optical and Spitzer data, to search for bright star-forming galaxies at z ≳ 7.5. Using a full photometric redshift fitting analysis applied to the ∼6 deg2 of imaging searched, we find 27 Lyman break galaxies (LBGs), including 20 new sources, with best-fitting photometric redshifts in the range 7.4 < z < 9.1. From this sample, we derive the rest-frame UV luminosity function at z = 8 and z = 9 out to extremely bright UV magnitudes (MUV ≃ −23) for the first time. We find an excess in the number density of bright galaxies in comparison to the typically assumed Schechter functional form derived from fainter samples. Combined with previous studies at lower redshift, our results show that there is little evolution in the number density of very bright (MUV ∼ −23) LBGs between z ≃ 5 and z ≃ 9. The tentative detection of an LBG with best-fitting photometric redshift of z = 10.9 ± 1.0 in our data is consistent with the derived evolution. We show that a double power-law fit with a brightening characteristic magnitude (ΔM*/Δz ≃ −0.5) and a steadily steepening bright-end slope (Δβ/Δz ≃ −0.5) provides a good description of the z > 5 data over a wide range in absolute UV magnitude (−23 < MUV < −17). We postulate that the observed evolution can be explained by a lack of mass quenching at very high redshifts in combination with increasing dust obscuration within the first ∼1Gyr of galaxy evolution.Obscured star formation in bright z ≃ 7 Lyman-break galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press 481:2 (2018) 1631-1644
Abstract:
We present Atacama Large Millimeter/Submillimeter Array observations of the rest-frame far-infrared (FIR) dust continuum emission of six bright Lyman-break galaxies (LBGs) at z ≃ 7. One LBG is detected (5.2σ at peak emission), whilst the others remain individually undetected at the 3σ level. The average FIR luminosity of the sample is found to be LFIR≃2×1011L⊙, corresponding to an obscured star formation rate (SFR) that is comparable to that inferred from the unobscured UV emission. In comparison to the infrared excess (IRX=LFIR/LUV)–β relation, our results are consistent with a Calzetti-like attenuation law (assuming a dust temperature of T = 40–50 K). We find a physical offset of 3kpc between the dust continuum emission and the rest-frame UV light probed by Hubble Space Telescope imaging for galaxy ID65666 at z=7.17+0.09−0.06. The offset is suggestive of an inhomogeneous dust distribution, where 75 per cent of the total star formation activity (SFR≃70M⊙/yr) of the galaxy is completely obscured. Our results provide direct evidence that dust obscuration plays a key role in shaping the bright end of the observed rest-frame UV luminosity function at z ≃ 7, in agreement with cosmological galaxy formation simulations. The existence of a heavily obscured component of galaxy ID65666 indicates that dusty star-forming regions, or even entire galaxies, that are ‘UV dark’ are significant even in the z ≃ 7 galaxy population.Extragalactic optical and near-infrared foregrounds to 21-cm epoch of reionisation experiments
Proceedings of the International Astronomical Union Cambridge University Press 12:S333 (2018) 183-190
Abstract:
Foreground contamination is one of the most important limiting factors in detecting the neutral hydrogen in the epoch of reionisation. These foregrounds can be roughly split into galactic and extragalactic foregrounds. In these proceedings we highlight information that can be gleaned from multi-wavelength extragalactic surveys in order to overcome this issue. We discuss how clustering information from the lower-redshift, foreground galaxies, can be used as additional information in accounting for the noise associated with the foregrounds. We then go on to highlight the expected contribution of future optical and near-infrared surveys for detecting the galaxies responsible for ionising the Universe. We suggest that these galaxies can also be used to reduce the systematics in the 21-cm epoch of reionisation signal through cross-correlations if enough common area is surveyed.Dust attenuation in 2 < z < 3 star-forming galaxies from deep ALMA observations of the Hubble Ultra Deep Field
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 476:3 (2018) 3991-4006