Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Rebecca Bowler

Visitor

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Galaxy formation and evolution
rebecca.bowler@physics.ox.ac.uk
  • About
  • Brief CV
  • Talks
  • ED&I
  • Links
  • Teaching
  • Publications

Extragalactic optical and near-infrared foregrounds to 21-cm epoch of reionisation experiments

Proceedings of the International Astronomical Union Cambridge University Press 12:S333 (2018) 183-190

Authors:

Matthew J Jarvis, Rebecca AA Bowler, PW Hatfield

Abstract:

Foreground contamination is one of the most important limiting factors in detecting the neutral hydrogen in the epoch of reionisation. These foregrounds can be roughly split into galactic and extragalactic foregrounds. In these proceedings we highlight information that can be gleaned from multi-wavelength extragalactic surveys in order to overcome this issue. We discuss how clustering information from the lower-redshift, foreground galaxies, can be used as additional information in accounting for the noise associated with the foregrounds. We then go on to highlight the expected contribution of future optical and near-infrared surveys for detecting the galaxies responsible for ionising the Universe. We suggest that these galaxies can also be used to reduce the systematics in the 21-cm epoch of reionisation signal through cross-correlations if enough common area is surveyed.
More details from the publisher
Details from ORA
More details

Dust attenuation in 2 < z < 3 star-forming galaxies from deep ALMA observations of the Hubble Ultra Deep Field

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 476:3 (2018) 3991-4006

Authors:

RJ McLure, JS Dunlop, F Cullen, N Bourne, PN Best, S Khochfar, RAA Bowler, AD Biggs, JE Geach, D Scott, MJ Michalowski, W Rujopakarn, E van Kampen, A Kirkpatrick, A Pope
More details from the publisher
Details from ORA
More details

The environment and host haloes of the brightest z~6 Lyman-break galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 477:3 (2018) 3760-3774

Authors:

Peter Hatfield, Rebecca Bowler, Matthew Jarvis, Catherine Hale

Abstract:

By studying the large-scale structure of the bright high-redshift Lyman-break galaxy (LBG) population it is possible to gain an insight into the role of environment in galaxy formation physics in the early Universe. We measure the clustering of a sample of bright ($-22.7
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Large sSynoptic Survey Telescope Galaxies Science Roadmap

(2017)

Authors:

BE Robertson, M Banerji, MC Cooper, Roger Davies, SP Driver, Ferguson, HC Ferguson, E Gawiser, S Kaviraj, JH Knapen, Chris Lintott, J Lotz, JA Newman, DJ Norman, N Padilla, SJ Schmidt, GP Smith, JA Tyson, Aprajita Verma, I Zehavi, L Armus, C Avestruz, LF Barrientos, Rebecca AA Bowler, MN Bremer, CJ Conselice, J Davies, R Demarco, ME Dickinson, G Galaz, A Grazian, BW Holwerda, Matthew Jarvis, V Kasliwal, I Lacerna, J Loveday, P Marshall, E Merlin, NR Napolitano, TH Puzia, A Robotham, S Salim, M Sereno, GF Snyder, JP Stott, PB Tissera, N Werner, P Yoachim, KD Borne

Abstract:

The Large Synoptic Survey Telescope (LSST) will enable revolutionary studies of galaxies, dark matter, and black holes over cosmic time. The LSST Galaxies Science Collaboration has identified a host of preparatory research tasks required to leverage fully the LSST dataset for extragalactic science beyond the study of dark energy. This Galaxies Science Roadmap provides a brief introduction to critical extragalactic science to be conducted ahead of LSST operations, and a detailed list of preparatory science tasks including the motivation, activities, and deliverables associated with each. The Galaxies Science Roadmap will serve as a guiding document for researchers interested in conducting extragalactic science in anticipation of the forthcoming LSST era.
More details from the publisher
Details from ORA
Details from ArXiV

The SCUBA-2 Cosmology Legacy Survey: the nature of bright submm galaxies from 2 deg(2) of 850-mu m imaging

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 469:1 (2017) 492-515

Authors:

MJ Michalowski, JS Dunlop, MP Koprowski, M Cirasuolo, JE Geach, RAA Bowler, A Mortlock, KI Caputi, I Aretxaga, V Arumugam, C-C Chen, RJ McLure, M Birkinshaw, N Bourne, D Farrah, E Ibar, P van der Werf, M Zemcov
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • Current page 13
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet