Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Donal Bradley

Visiting Professor

Sub department

  • Condensed Matter Physics
donal.bradley@physics.ox.ac.uk
Telephone: 01865 (2)72401,01865 (2)82572
  • About
  • Publications

Conformation control of triplet state diffusion in platinum containing polyfluorene copolymers

Journal of Polymer Science Wiley 61:1 (2022) 83-93

Authors:

Nikol T Lambeva, Claudius C Mullen, Xuyu Gao, Qingjing Wu, Robert A Taylor, Youtian Tao, Donal DC Bradley

Abstract:

The spectral diffusion of singlet and triplet excitons in 9,9-dioctylfluorene-based conjugated copolymers is investigated using photoluminescence spectroscopy at both low (5 K) and room temperature (300 K). Inclusion of a N,N-diphenyl-4-(pyridin-2-yl)aniline moiety into the polymer backbone allows subsequent cyclometalation with platinum acetylacetonate to increase the spin-orbit coupling and yield radiative decay from the triplet state. For suitably low fractions (≤5%) of bulky ligand inclusion, cyclometalated or not, the resulting longer sequences of fluorene units are able to adopt the chain-extended β-phase conformation. Comparison between the phosphorescence spectral diffusion in glassy- and β-phase Pt-copolymer samples provide insight into the triplet exciton transfer in more- or less-disordered conjugated polymer films. It is found in the glassy-phase samples with shorter conjugation lengths that the triplet exciton relaxation becomes frustrated at low temperature due to a freezing out of the thermally activated hops required to move from one conjugated segment to another. In contrast, for films containing β-phase chain segments, with increased conjugation lengths, this frustration is lifted as more hopping sites remain accessible through intra-segment motion. This work demonstrates controlled use of changes in molecular conformation to optimize triplet diffusion properties in a member of the widely deployed fluorene-based conjugated copolymers.
More details from the publisher
Details from ORA
More details
More details

Optimizing Interfacial Energetics for Conjugated Polyelectrolyte Electron Injection Layers in High Efficiency and Fast Responding Polymer Light Emitting Diodes.

ACS applied materials & interfaces 14:21 (2022) 24668-24680

Authors:

Iain Hamilton, Minwon Suh, Jim Bailey, Donal DC Bradley, Ji-Seon Kim

Abstract:

Modification of the π-conjugated backbone structure of conjugated polyelectrolytes (CPEs) for use as electron injection layers (EILs) in polymer light emitting diodes (PLEDs) has previously brought conflicted results in the literature in terms of device efficiency and turn-on response time. Herein, we determine the energetics at the CPE and the light emitting polymer (LEP) interface as a key factor for PLED device performance. By varying the conjugated backbone structure of both the LEP and CPE, we control the nature of the CPE/LEP interface in terms of optical energy gap offset, interfacial energy level offset, and location of the electron-hole recombination zone. We use a wide gap CPE with a shallow LUMO (F8im-Br) and one with a smaller gap and deeper LUMO (F8imBT-Br), in combination with three different LEPs. We find that the formation of a type II heterojunction at the CPE/LEP interfaces causes interfacial luminance quenching, which is responsible for poor efficiency in PLED devices. The effect is exacerbated with increased energy level offset from ionic rearrangement and hole accumulation occurring near the CPE/LEP interface. However, a deep CPE LUMO is found to be beneficial for fast current and luminance turn-on times of devices. This work provides important CPE molecular design rules for EIL use, offering progress toward a universal PLED-compatible CPE that can simultaneously deliver high efficiency and fast response times. In particular, engineering the LUMO position to be deep enough for fast device turn-on while avoiding the creation of a large energy level offset at the CPE/LEP interface is shown to be highly desirable.
More details from the publisher
More details
More details

Properties and applications of copper(I) thiocyanate hole-transport interlayers processed from different solvents

Advanced Electronic Materials Wiley 8:7 (2022) 2101253

Authors:

B Wang, S Nam, S Limbu, J-S Kim, Moritz Riede, Ddc Bradley

Abstract:

Copper(I) thiocyanate (CuSCN) is an effective interlayer material for hole injection and transport in organic electronic devices but its solution processing has conventionally utilized undesirable di-n-alkyl sulfide solvents such as diethyl- (DES) and dipropyl-sulfide (DPS). Herein, this paper reports on the use of N,N-dimethylformamide (DMF) and 1-methyl-2-pyrrolidinone (NMP) as alternative solvents for CuSCN interlayers and performs a detailed comparison of the resulting properties relative to films processed from DES and DPS and two other recent alternatives, dimethyl sulfoxide (DMSO) and ammonium hydroxide. The surface roughness, polymorphism, and surface chemistry of the resulting CuSCN layers are reported. The interlayer surface energy and ionization potential that are key to the overlying semiconductor microstructure and interfacial energy barrier, and hence to charge transport and injection, are also discussed. Finally, systematic device tests using well-known organic semiconductors in light-emitting diode, solar cell and field-effect transistor structures demonstrate the overall suitability of DMSO and DMF as solvents for CuSCN interlayer deposition to achieve better device performance. This study broadens the applicability of CuSCN as a highly efficient hole injection/transport material for organic semiconductor devices by expanding the documented range of suitable CuSCN solvents.
More details from the publisher
Details from ORA
More details

Efficient anisotropic polariton lasing using molecular conformation and orientation in organic microcavities

ArXiv 2202.10417 (2022)

Authors:

F Le Roux, A Mischok, DDC Bradley, MC Gather
Details from ArXiV

Slow energy transfer in self-doped beta-conformation film of steric polydiarylfluorenes toward stable dual deep-blue amplified spontaneous emission

Advanced Optical Materials Wiley 10:1 (2021) 2100723

Authors:

Man Xu, Lili Sun, Shengjie Wang, Jinyi Lin, Mengna Yu, Xuhua Wang, Paul N Stavrinou, Linghai Xie, Nathan J Cheetham, Xuehua Ding, Donal DC Bradley, Wei Huang

Abstract:

Exciton behavior is crucial for improving the optoelectronic property of a light-emitting conjugated polymer. Herein, the photoexcitation dynamics of exciton migration and energy transfer in a self-doped β-conformation film of the polydiarylfluorenes (poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]-co-[5-(octyloxy)-9,9- diphenylfluoren-2,7-diyl], PODPF) are demonstrated. Compared to the first generation of the β-conformation polyfluorene, poly(9,9-dioctylfluorene) (PFO), energy transfer occurs in PODPF β-conformation films in a time period of ≈150 ps, much longer than those of the PFO ones (<5 ps), associated with the effective intrachain energy transfer (few hundred picoseconds), rather than interchain Förster energy transfer (a few picoseconds). Similar to PFO, the PODPF β-conformation also displays well-resolved vibronic emission peaks at 20 K, attributed to the planar and rigid conformation. Interestingly, a residual 0-0 band emission of nonplanar conformation chain segments (435 nm, 2.85 eV) at 20 K also further confirms the exciton migration from the amorphous state to the β-conformation domain in PODPF films. Therefore, the stable dual amplified spontaneous emission (ASE) behavior of the PODPF self-doped films at 461 nm (2.69 eV) and 483 nm (2.57 eV), originates from the individual amorphous and β-conformation domains.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet