Discovery of three distant, cold brown dwarfs in the WFC3 infrared spectroscopic parallels survey
Astrophysical Journal Letters 752:1 (2012)
Abstract:
We present the discovery of three late-type (≥T4.5) brown dwarfs, including a probable Y dwarf, in the WFC3 Infrared Spectroscopic Parallels (WISP) survey. We use the G141 grism spectra to determine the spectral types of the dwarfs and derive distance estimates based on a comparison with nearby T dwarfs with known parallaxes. These are the most distant spectroscopically confirmed T/Y dwarfs, with the farthest at an estimated distance of 400pc. We compare the number of cold dwarfs found in the WISP survey with simulations of the brown dwarf mass function. The number found is generally consistent with an initial stellar mass function dN/dMM -α with α = 0.0-0.5, although the identification of a Y dwarf is somewhat surprising and may be indicative of either a flatter absolute magnitude/spectral-type relation than previously reported or an upturn in the number of very-late-type brown dwarfs in the observed volume. © 2012. The American Astronomical Society. All rights reserved..Dust extinction from Balmer decrements of star-forming galaxies at 0.75
(2012)
Discovery of Three Distant, Cold Brown Dwarfs in the WFC3 Infrared Spectroscopic Parallels Survey
(2012)
Very strong emission-line galaxies in the WFC3 infrared spectroscopic parallel survey and implications for high-redshift galaxies
Astrophysical Journal 743:2 (2011)
Abstract:
The WFC3 Infrared Spectroscopic Parallel Survey uses the Hubble Space Telescope (HST) infrared grism capabilities to obtain slitless spectra of thousands of galaxies over a wide redshift range including the peak of star formation history of the universe. We select a population of very strong emission-line galaxies with rest-frame equivalent widths (EWs) higher than 200 . A total of 176 objects are found over the redshift range 0.35 < z < 2.3 in the 180 arcmin2 area that we have analyzed so far. This population consists of young and low-mass starbursts with high specific star formation rates (sSFR). After spectroscopic follow-up of one of these galaxies with Keck/Low Resolution Imaging Spectrometer, we report the detection at z = 0.7 of an extremely metal-poor galaxy with 12 + log(O/H) =7.47 0.11. After estimating the active galactic nucleus fraction in the sample, we show that the high-EW galaxies have higher sSFR than normal star-forming galaxies at any redshift. We find that the nebular emission lines can substantially affect the total broadband flux density with a median brightening of 0.3 mag, with some examples of line contamination producing brightening of up to 1 mag. We show that the presence of strong emission lines in low-z galaxies can mimic the color-selection criteria used in the z 8 dropout surveys. In order to effectively remove low-redshift interlopers, deep optical imaging is needed, at least 1 mag deeper than the bands in which the objects are detected. Without deep optical data, most of the interlopers cannot be ruled out in the wide shallow HST imaging surveys. Finally, we empirically demonstrate that strong nebular lines can lead to an overestimation of the mass and the age of galaxies derived from fitting of their spectral energy distribution (SED). Without removing emission lines, the age and the stellar mass estimates are overestimated by a factor of 2 on average and up to a factor of 10 for the high-EW galaxies. Therefore, the contribution of emission lines should be systematically taken into account in SED fitting of star-forming galaxies at all redshifts. © 2011. The American Astronomical Society. All rights reserved.Very Strong Emission-Line Galaxies in the WISP Survey and Implications for High-Redshift Galaxies
(2011)