Low Masses and High Redshifts: The Evolution of the Mass-Metallicity Relation
(2013)
Theoretical predictions for the effect of nebular emission on the broad band photometry of high-redshift galaxies
(2013)
Predicting Future Space Near-IR Grism Surveys using the WFC3 Infrared Spectroscopic Parallels Survey
(2013)
Confronting predictions of the galaxy stellar mass function with observations at high redshift
Monthly Notices of the Royal Astronomical Society 429:3 (2013) 2098-2103
Abstract:
We investigate the evolution of the galaxy stellar mass function at high redshift (z ≥ 5) using a pair of large cosmological hydrodynamical simulations: MassiveBlack and Massive Black-II. By combining these simulations, we can study the properties of galaxies with stellar masses greater than 108M⊙ h-1 and (comoving) number densities of log10(φ [Mpc-3 dex-1 h3]) > -8. Observational determinations of the galaxy stellar mass function at very high redshift typically assume a relation between the observed ultraviolet (UV) luminosity and stellar massto- light ratio which is applied to high-redshift samples in order to estimate stellar masses. This relation can also be measured from the simulations. We do this, finding two significant differences with the usual observational assumption: it evolves strongly with redshift and has a different shape. Using this relation to make a consistent comparison between galaxy stellar mass functions, we find that at z=6 and above the simulation predictions are in good agreement with observed data over the whole mass range. Without using the correct UV luminosity and stellar mass-to-light ratio, the discrepancy would be up to two orders of magnitude for large galaxies (>1010M⊙ h-1). At z = 5, however, the stellar mass function for low-mass galaxies (<109M⊙ h-1) is overpredicted by factors of a few, consistent with the behaviour of the UV luminosity function, and perhaps a sign that feedback in the simulation is not efficient enough for these galaxies. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.Constraining the bright-end of the UV luminosity function for z ≈ 7-9 galaxies: Results from CANDELS/GOODS-South
Monthly Notices of the Royal Astronomical Society 429:1 (2013) 150-158