Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Andrew Bunker

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
Andy.Bunker@physics.ox.ac.uk
Telephone: 01865 (2)83126
Denys Wilkinson Building, room 702
  • About
  • Publications

The contribution of high-redshift galaxies to cosmic reionization: New results from deep WFC3 imaging of the Hubble Ultra Deep Field

Monthly Notices of the Royal Astronomical Society 409:2 (2010) 855-866

Authors:

AJ Bunker, S Wilkins, RS Ellis, DP Stark, S Lorenzoni, K Chiu, M Lacy, MJ Jarvis, S Hickey

Abstract:

We have searched for star-forming galaxies at z- 7-10 by applying the Lyman-break technique to newly released Y-, J- and H-band images (1.1, 1.25 and 1.6 μm) from Wide Field Camera 3 (WFC3) on the Hubble Space Telescope. By comparing these images of the Hubble Ultra Deep Field with the Advanced Camera for Surveys (ACS) z'-band (0.85 μm) images, we identify objects with red colours, (z'-Y)AB > 1.3, consistent with the Lyman α forest absorption at z≈ 6.7-8.8. We identify 12 of these z'-drops down to a limiting magnitude YAB < 28.5 (equivalent to a star formation rate of 1.3-M--yr-1 at z= 7.1), all of which are undetected in the other ACS filters. We use the WFC3 J-band image to eliminate contaminant low-mass Galactic stars, which typically have redder colours than z≈ 7 galaxies. One of our z'-drops is probably a T-dwarf star. The z≈ 7-z'-drops appear to have much bluer spectral slopes than Lyman-break galaxies at lower redshift. Our brightest z'-drop is not present in the NICMOS J-band image of the same field taken 5 years before, and is a possible transient object. From the 10 remaining z≈ 7 candidates we determine a lower limit on the star formation rate density of 0.0017-M--yr-1-Mpc-3 for a Salpeter initial mass function, which rises to 0.0025-0.004-M--yr-1-Mpc-3 after correction for luminosity bias. The star formation rate density is a factor of ≈10 less than that of Lyman-break galaxies at z= 3-4, and is about half the value at z≈ 6. We also present the discovery of seven Y-drop objects with (Y-J)AB > 1.0 and JAB < 28.5 which are candidate star-forming galaxies at higher redshifts (z≈ 8-9). We find no robust J-drop candidates at z≈ 10. While based on a single deep field, our results suggest that this star formation rate density would produce insufficient Lyman continuum photons to reionize the Universe unless the escape fraction of these photons is extremely high (fesc > 0.5), and the clumping factor of the Universe is low. Even then, we need to invoke a large contribution from galaxies below our detection limit (a steep faint-end slope). The apparent shortfall in ionizing photons might be alleviated if stellar populations at high redshift are of low metallicity or have a top-heavy initial mass function. © 2010 The Authors. Journal compilation © 2010 RAS.
More details from the publisher
More details
Details from ArXiV

Constraints on star-forming galaxies at z ≥ 6.5 from HAWK-I Y-band imaging of GOODS-South

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 404:1 (2010) 212-223

Authors:

Samantha Hickey, Andrew Bunker, Matt J Jarvis, Kuenley Chiu, David Bonfield
More details from the publisher
Details from ArXiV

Probing ∼L* Lyman-break galaxies at z ≈ 7 in GOODS-South with WFC3 on Hubble Space Telescope

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 403:2 (2010) 938-944

Authors:

Stephen M Wilkins, Andrew J Bunker, Richard S Ellis, Daniel Stark, Elizabeth R Stanway, Kuenley Chiu, Silvio Lorenzoni, Matt J Jarvis
More details from the publisher
Details from ArXiV

The science case for PILOT II: The distant universe

Publications of the Astronomical Society of Australia 26:4 (2009) 397-414

Authors:

JS Lawrence, MCB Ashley, A Bunker, R Bouwens, D Burgarella, MG Burton, N Gehrels, K Glazebrook, K Pimbble, R Quimby, W Saunders, JWV Storey, JC Wheeler

Abstract:

PILOT (the Pathfinder for an International Large Optical Telescope) is a proposed 2.5-m optical/ infrared telescope to be located at Dome C on the Antarctic plateau. The atmospheric conditions at Dome C deliver a high sensitivity, high photometric precision, wide-field, high spatial resolution, and high-cadence imaging capability to the PILOT telescope. These capabilities enable a unique scientific potential for PILOT, which is addressed in this series of papers. The current paper presents a series of projects dealing with the distant (redshift >1) Universe, that have been identified as key science drivers for the PILOT facility. The potential for PILOT to detect the first populations of stars to form in the early Universe, via infrared projects searching for pair-instability supernovae and gamma-ray burst afterglows, is investigated. Two projects are proposed to examine the assembly and evolution of structure in the Universe: an infrared survey searching for the first evolved galaxies at high redshift, and an optical survey aimed at characterising moderate-redshift galaxy clusters. Finally, a large-area weak-lensing survey and a program to obtain supernova infrared light-curves are proposed to examine the nature and evolution of dark energy and dark matter. © Astronomical Society of Australia 2009.
More details from the publisher

Probing $\sim L_{*}$ Lyman-break Galaxies at $z\approx 7$ in GOODS-South with WFC3 on HST

(2009)

Authors:

Stephen M Wilkins, Andrew J Bunker, Richard S Ellis, Daniel Stark, Elizabeth R Stanway, Kuenley Chiu, Silvio Lorenzoni, Matt J Jarvis
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 71
  • Page 72
  • Page 73
  • Page 74
  • Current page 75
  • Page 76
  • Page 77
  • Page 78
  • Page 79
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet