Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Andrew Bunker

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
Andy.Bunker@physics.ox.ac.uk
Telephone: 01865 (2)83126
Denys Wilkinson Building, room 702
  • About
  • Publications

Candidate z~8-9 Galaxies from WFC3 Imaging

(2010)

Authors:

Silvio Lorenzoni, Andrew Bunker, Stephen Wilkins, Elizabeth Stanway, Matt Jarvis, Joseph Caruana
More details from the publisher

The WFC3 Infrared Spectroscopic Parallel (WISP) Survey

(2010)

Authors:

H Atek, M Malkan, P McCarthy, H Teplitz, C Scarlata, B Siana, A Henry, J Colbert, NR Ross, C Bridge, AJ Bunker, A Dressler, RAE Fosbury, C martin, H Shim
More details from the publisher

Keck Spectroscopy of Faint 3

(2010)

Authors:

Daniel P Stark, Richard S Ellis, Kuenley Chiu, Masami Ouchi, Andrew Bunker
More details from the publisher

New Star Forming Galaxies at z\approx 7 from WFC3 Imaging

(2010)

Authors:

Stephen M Wilkins, Andrew J Bunker, Silvio Lorenzoni, Joseph Caruana
More details from the publisher

2D kinematics and physical properties of z ∼ 3 star-forming galaxies

Monthly Notices of the Royal Astronomical Society 401:3 (2010) 1657-1669

Authors:

M Lemoine-Busserolle, A Bunker, F Lamareille, M Kissler-Patig

Abstract:

We present results from a study of the kinematic structure of star-forming galaxies at redshift z ∼ 3 selected in the VIMOS VLT Deep Survey (VVDS), using integral field spectroscopy of rest-frame optical nebular emission lines, in combination with rest-frame UV spectroscopy, ground-based optical/near-IR and Spitzer photometry. We also constrain the underlying stellar populations to address the evolutionary status of these galaxies. We infer the kinematic properties of four galaxies: VVDS-20298666, VVDS-020297772, VVDS-20463884 and VVDS-20335183 with redshifts z = 3.2917, 3.2878, 3.2776 and 3.7062, respectively. While VVDS-20463884 presents an irregular velocity field with a peak in the local velocity dispersion of the galaxy shifted from the centre of the galaxy, VVDS-20298666 has a well-resolved gradient in velocity over a distance of ∼4.5 kpc with a peak-to-peak amplitude of v = 91 km s -1. We discovered that the nearby galaxy, VVDS-020297772 (which shows traces of active galactic nucleus activity), is in fact a companion at a similar redshift with a projected separation of 12 kpc. In contrast, the velocity field of VVDS-020335183 seems more consistent with a merger on a rotating disc. However, all of the objects have a high local velocity dispersion (σ ∼ 60-70 km s-1), which gives v/σ ≲ 1. It is unlikely that these galaxies are a dynamically cold rotating disc of ionized gas. © 2009 RAS.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 74
  • Page 75
  • Page 76
  • Page 77
  • Current page 78
  • Page 79
  • Page 80
  • Page 81
  • Page 82
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet