Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Martin Bureau

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
martin.bureau@physics.ox.ac.uk
Telephone: 01865 (2)73377
Denys Wilkinson Building, room 701
Home page
ORCID
  • About
  • Publications

Molecular gas kinematics and line diagnostics in early-type galaxies: NGC4710 & NGC5866

Monthly Notices of the Royal Astronomical Society Oxford University Press 463:4 (2016) 4121-4152

Authors:

Martin Bureau, Selçuk Topal, Timothy A Davis, Melanie Krips, Lisa M Young, Alison F Crocker

Abstract:

We present interferometric observations of CO lines (12CO(1-0, 2-1) and 13CO(1-0, 2-1)) and dense gas tracers (HCN(1-0), HCO+ (1-0), HNC(1-0) and HNCO(4-3)) in two nearby edgeon barred lenticular galaxies, NGC 4710 and NGC 5866, with most of the gas concentrated in a nuclear disc and an inner ring in each galaxy. We probe the physical conditions of a two-component molecular interstellar medium in each galaxy and each kinematic component by using molecular line ratio diagnostics in three complementary ways. First, we measure the ratios of the position-velocity diagrams of different lines, second we measure the ratios of each kinematic component’s integrated line intensities as a function of projected position, and third we model these line ratios using a non-local thermodynamic equilibrium radiative transfer code. Overall, the nuclear discs appear to have a tenuous molecular gas component that is hotter, optically thinner and with a larger dense gas fraction than that in the inner rings, suggesting more dense clumps immersed in a hotter more diffuse molecular medium. This is consistent with evidence that the physical conditions in the nuclear discs are similar to those in photo-dissociation regions. A similar picture emerges when comparing the observed molecular line ratios with those of other galaxy types. The physical conditions of the molecular gas in the nuclear discs of NGC 4710 and NGC 5866 thus appear intermediate between those of spiral galaxies and starbursts, while the star formation in their inner rings is even milder.
More details from the publisher
Details from ORA
More details

Star formation in nearby early-type galaxies: The radio continuum perspective

Monthly Notices of the Royal Astronomical Society Oxford University Press 464:1 (2016) 1029-1064

Authors:

Martin Bureau, Kristina Nyland, Lisa M Young, Joan M Wrobel, Timothy A Davis, Katherine Alatalo, Raffaella Morganti, Pierre-Alain Duc, P Tim de Zeeuw, Richard M McDermid, Alison F Crocker, Tom Oosterloo

Abstract:

We present a 1.4 GHz Karl G. Jansky Very Large Array (VLA) study of a sample of early-type galaxies (ETGs) from the volume- and magnitude-limited ATLAS3D survey. The radio morphologies of these ETGs at a resolution of θFWHM ≈ 5'' are diverse and include sources that are compact on sub-kpc scales, resolved structures similar to those seen in star-forming spiral galaxies, and kpc-scale radio jets/lobes associated with active nuclei. We compare the 1.4 GHz, molecular gas, and infrared (IR) properties of these ETGs. The most CO-rich ATLAS3D ETGs have radio luminosities consistent with extrapolations from H2 mass-derived star formation rates from studies of late-type galaxies. These ETGs also follow the radio-IR correlation. However, ETGs with lower molecular gas masses tend to have less radio emission relative to their CO and IR emission compared to spirals. The fraction of galaxies in our sample with high IR-radio ratios is much higher than in previous studies, and cannot be explained by a systematic underestimation of the radio luminosity due to the presence extended, low-surface-brightness emission that was resolved-out in our VLA observations. In addition, we find that the high IR-radio ratios tend to occur at low IR luminosities, but are not associated with low dynamical mass or metallicity. Thus, we have identified a population of ETGs that have a genuine shortfall of radio emission relative to both their IR and molecular gas emission. A number of mechanisms may conspire to cause this radio deficiency, including a bottom-heavy stellar initial mass function, weak magnetic fields, a higher prevalence of environmental effects compared to spirals and enhanced cosmic ray losses
More details from the publisher
Details from ORA
More details

Black Hole Mass Measurement in Nearby Galaxy Using Molecular Gas Dynamics

Institute of Electrical and Electronics Engineers (IEEE) (2016) 1-4

Authors:

Kyoko Onishi, Satoru Iguchi, Timothy Davis, Martin Bureau, Michele Cappellari, Leo Blitz, Marc Sarzi
More details from the publisher

The Tully-Fisher Relation of COLD GASS Galaxies

(2016)

Authors:

Alfred L Tiley, Martin Bureau, Amélie Saintonge, Selcuk Topal, Timothy A Davis, Kazufumi Torii
More details from the publisher

The Tully-Fisher relation of COLD GASS galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 461:4 (2016) 3494-3515

Authors:

Alfred L Tiley, Martin Bureau, Amélie Saintonge, Selcuk Topal, Timothy A Davis, Kazufumi Torii

Abstract:

We present the stellar mass (M*) and Wide-Field Infrared Survey Explorer (WISE) absolute Band 1 magnitude (MW1) Tully-Fisher relations (TFRs) of subsets of galaxies from the CO Legacy Database for the Galex Arecibo SDSS Survey (COLD GASS). We examine the benefits and drawbacks of several commonly used fitting functions in the context of measuring CO(1-0) line widths (and thus rotation velocities), favouring the Gaussian Double Peak function. We find the MW1 and M* TFR, for a carefully selected sub-sample, to be MW1 = (-7.1 ± 0.6) [log(W50/sin i / km s^-1) - 23.83 ± 0.09 and log (M*/M⊙) = (3.3 ± 0.3) [log(W50/sin i / km s^-1) -2.58] + 10:51 ± 0.04, respectively, where W50 is the width of a galaxy's CO(1-0) integrated profile at 50% of its maximum and the inclination i is derived from the galaxy axial ratio measured on the SDSS r-band image. We find no evidence for any significant offset between the TFRs of COLD GASS galaxies and those of comparison samples of similar redshifts and morphologies. The slope of the COLD GASS M* TFR agrees with the relation of Pizagno et al. (2005). However, we measure a comparitively shallower slope for the COLD GASS MW1 TFR as compared to the relation of Tully and Pierce (2000). We attribute this to the fact that the COLD GASS sample comprises galaxies of various (late-type) morphologies. Nevertheless, our work provides a robust reference point with which to compare future CO TFR studies.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • Current page 29
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet