Formation of slowly rotating early-type galaxies via major mergers: a resolution study
Monthly Notices of the Royal Astronomical Society 406:4 (2010) 2405-2420
Abstract:
We study resolution effects in numerical simulations of gas-rich and gas-poor major mergers, and show that the formation of slowly rotating elliptical galaxies often requires a resolution that is beyond the present-day standards to be properly modelled. Our sample of equal-mass merger models encompasses various masses and spatial resolutions, ranging from about 200 pc and 105 particles per component (stars, gas and dark matter), i.e. a gas mass resolution of ∼105 M⊙, typical of some recently published major merger simulations, to up to 32 pc and ∼103 M⊙ in simulations using 2.4 × 107 collisionless particles and 1.2 × 107 gas particles, among the highest resolutions reached so far for gas-rich major merger of massive disc galaxies. We find that the formation of fast-rotating early-type galaxies, that are flattened by a significant residual rotation, is overall correctly reproduced at all such resolutions. However, the formation of slow-rotating early-type galaxies, which have a low-residual angular momentum and are supported mostly by anisotropic velocity dispersions, is strongly resolution-dependent. The evacuation of angular momentum from the main stellar body is largely missed at standard resolution, and systems that should be slow rotators are then found to be fast rotators. The effect is most important for gas-rich mergers, but is also witnessed in mergers with an absent or modest gas component (0-10 per cent in mass). The effect is robust with respect to our initial conditions and interaction orbits, and originates in the physical treatment of the relaxation process during the coalescence of the galaxies. Our findings show that a high-enough resolution is required to accurately model the global properties of merger remnants and the evolution of their angular momentum. The role of gas-rich mergers of spiral galaxies in the formation of slow-rotating ellipticals may therefore have been underestimated. Moreover, the effect of gas in a galaxy merger is not limited to helping the survival/rebuilding of rotating disc components: at high resolution, gas actively participates in the relaxation process and the formation of slowly rotating stellar systems. © 2010 The Authors. Journal compilation © 2010 RAS.The SAURON project - XVI. On the sources of ionization for the gas in elliptical and lenticular galaxies
Monthly Notices of the Royal Astronomical Society 402:4 (2010) 2187-2210
Abstract:
Following our study on the incidence, morphology and kinematics of the ionized gas in early-type galaxies, we now address the question of what is powering the observed nebular emission. To constrain the likely sources of gas excitation, we resort to a variety of ancillary data we draw from complementary information on the gas kinematics, stellar populations and galactic potential from the sauron data, and use the sauron-specific diagnostic diagram juxtaposing the [O iii]λ5007/Hβ and [N i]λλ5197, 5200/Hβ line ratios. We find a tight correlation between the stellar surface brightness and the flux of the Hβ recombination line across our sample, which points to a diffuse and old stellar source as the main contributor of ionizing photons in early-type galaxies, with post-asymptotic giant branch (pAGB) stars being still the best candidate based on ionizing balance arguments. The role of AGN photoionization is confined to the central 2-3 arcsec of an handful of objects with radio or X-ray cores. OB-stars are the dominant source of photoionization in 10 per cent of the sauron sample, whereas for another 10 per cent the intense and highly ionized emission is powered by the pAGB population associated to a recently formed stellar subcomponent. Fast shocks are not an important source of ionization for the diffuse nebular emission of early-type galaxies since the required shock velocities can hardly be attained in the potential of our sample galaxies. Finally, in the most massive and slowly or non-rotating galaxies in our sample, which can retain a massive X-ray halo, the finding of a spatial correlation between the hot and warm phases of the interstellar medium (ISM) suggests that the interaction with the hot ISM provides an additional source of ionization besides old ultraviolet-bright stars. This is also supported by a distinct pattern towards lower values of the [O iii]/Hβ ratio. These results lead us to investigate the relative role of stellar and AGN photoionization in explaining the ionized gas emission observed in early-type galaxies by the Sloan Digital Sky Survey (SDSS). By simulating how our sample galaxies would appear if placed at further distance and targeted by the SDSS, we conclude that only in very few, if any, of the SDSS galaxies which display modest values for the equivalent width of the [O iii] line (less than ∼2.4 Å) and low-ionization nuclear emission-line region like [O iii]/Hβ values the nebular emission is truly powered by an AGN. © 2010 The Authors. Journal compilation © 2010 RAS.The Tully-Fisher relations of early-type spiral and S0 galaxies
Monthly Notices of the Royal Astronomical Society 409:4 (2010) 1330-1346
Abstract:
We demonstrate that the comparison of Tully-Fisher relations (TFRs) derived from global H-i linewidths to TFRs derived from the circular-velocity profiles of dynamical models (or stellar kinematic observations corrected for asymmetric drift) is vulnerable to systematic and uncertain biases introduced by the different measures of rotation used. We therefore argue that to constrain the relative locations of the TFRs of spiral and S0 galaxies, the same tracer and measure must be used for both samples. Using detailed near-infrared imaging and the circular velocities of axisymmetric Jeans models of 14 nearby edge-on Sa-Sb spirals and 14 nearby edge-on S0s drawn from a range of environments, we find that S0s lie on a TFR with the same slope as the spirals, but are on average 0.53 ± 0.15-mag fainter at KS band at a given rotational velocity. This is a significantly smaller offset than that measured in earlier studies of the S0 TFR, which we attribute to our elimination of the bias associated with using different rotation measures and our use of earlier-type spirals as a reference. Since our measurement of the offset avoids systematic biases, it should be preferred to previous estimates. A spiral stellar population in which star formation is truncated would take ≈1-Gyr to fade by 0.53-mag at KS band. If S0s are the products of a simple truncation of star formation in spirals, then this finding is difficult to reconcile with the observed evolution of the spiral/S0 fraction with redshift. Recent star formation could explain the observed lack of fading in S0s, but the offset of the S0 TFR persists as a function of both stellar and dynamical mass. We show that the offset of the S0 TFR could therefore be explained by a systematic difference between the total mass distributions of S0s and spirals, in the sense that S0s need to be smaller or more concentrated than spirals. © 2010 The Authors. Journal compilation © 2010 RAS.Early-type Galaxies in Isolation: an H I Perspective with ATLAS3D
GALAXIES IN ISOLATION: EXPLORING NATURE VERSUS NURTURE 421 (2010) 49-+
Lenticular vs spiral galaxies: dark matter content and the Tully-Fisher relation
HIGHLIGHTS OF ASTRONOMY, VOL 15 15 (2010) 82-82