Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Martin Bureau

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
martin.bureau@physics.ox.ac.uk
Telephone: 01865 (2)73377
Denys Wilkinson Building, room 701
Home page
ORCID
  • About
  • Publications

Formation of Slowly Rotating Elliptical Galaxies in Major Mergers. A Resolution Study

AIP Conference Proceedings AIP Publishing 1240:1 (2010) 405-406

Authors:

M Bois, F Bournaud, E Emsellem, K Alatalo, L Blitz, M Bureau, M Cappellari, RL Davies, TA Davis, PT de Zeeuw, J Falcón-Barroso, S Khochfar, D Krajnović, H Kuntschner, P-Y Lablanche, RM McDermid, R Morganti, T Naab, M Sarzi, N Scott, P Serra, RCE van den Bosch, G van de Ven, A Weijmans, LM Young, Victor P Debattista, CC Popescu
More details from the publisher
More details

The ATLAS3D Project: A Paradigm Shift for Early‐Type Galaxies

AIP Conference Proceedings AIP Publishing 1240:1 (2010) 335-338

Authors:

E Emsellem, K Alatalo, L Blitz, M Bois, F Bournaud, M Bureau, M Cappellari, RL Davies, TA Davis, PT de Zeeuw, S Khochfar, D Krajnović, H Kuntschner, P-Y Lablanche, RM McDermid, R Morganti, T Naab, T Oosterloo, M Sarzi, N Scott, P Serra, A Weijmans, LM Young, Victor P Debattista, CC Popescu
More details from the publisher
More details

Molecular Gas in SAURON Early-Type Galaxies: Detection of 13CO and HCN Emission

(2010)

Authors:

M Krips, AF Crocker, M Bureau, F Combes, LM Young
More details from the publisher

Formation of slowly rotating early-type galaxies via major mergers: a Resolution Study

(2010)

Authors:

M Bois, F Bournaud, E Emsellem, K Alatalo, L Blitz, M Bureau, M Cappellari, RL Davies, TA Davis, PT de Zeeuw, P-A Duc, S Khochfar, D Krajnovic, H Kuntschner, P-Y Lablanche, RM McDermid, R Morganti, T Naab, T Oosterloo, M Sarzi, N Scott, P Serra, A Weijmans, LM Young
More details from the publisher

Formation of slowly rotating early-type galaxies via major mergers: a resolution study

Monthly Notices of the Royal Astronomical Society 406:4 (2010) 2405-2420

Authors:

M Bois, F Bournaud, E Emsellem, K Alatalo, L Blitz, M Bureau, M Cappellari, RL Davies, TA Davis, PT de Zeeuw, PA Duc, S Khochfar, D Krajnović, H Kuntschner, PY Lablanche, RM McDermid, R Morganti, T Naab, T Oosterloo, M Sarzi, N Scott, P Serra, A Weijmans, LM Young

Abstract:

We study resolution effects in numerical simulations of gas-rich and gas-poor major mergers, and show that the formation of slowly rotating elliptical galaxies often requires a resolution that is beyond the present-day standards to be properly modelled. Our sample of equal-mass merger models encompasses various masses and spatial resolutions, ranging from about 200 pc and 105 particles per component (stars, gas and dark matter), i.e. a gas mass resolution of ∼105 M⊙, typical of some recently published major merger simulations, to up to 32 pc and ∼103 M⊙ in simulations using 2.4 × 107 collisionless particles and 1.2 × 107 gas particles, among the highest resolutions reached so far for gas-rich major merger of massive disc galaxies. We find that the formation of fast-rotating early-type galaxies, that are flattened by a significant residual rotation, is overall correctly reproduced at all such resolutions. However, the formation of slow-rotating early-type galaxies, which have a low-residual angular momentum and are supported mostly by anisotropic velocity dispersions, is strongly resolution-dependent. The evacuation of angular momentum from the main stellar body is largely missed at standard resolution, and systems that should be slow rotators are then found to be fast rotators. The effect is most important for gas-rich mergers, but is also witnessed in mergers with an absent or modest gas component (0-10 per cent in mass). The effect is robust with respect to our initial conditions and interaction orbits, and originates in the physical treatment of the relaxation process during the coalescence of the galaxies. Our findings show that a high-enough resolution is required to accurately model the global properties of merger remnants and the evolution of their angular momentum. The role of gas-rich mergers of spiral galaxies in the formation of slow-rotating ellipticals may therefore have been underestimated. Moreover, the effect of gas in a galaxy merger is not limited to helping the survival/rebuilding of rotating disc components: at high resolution, gas actively participates in the relaxation process and the formation of slowly rotating stellar systems. © 2010 The Authors. Journal compilation © 2010 RAS.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 55
  • Page 56
  • Page 57
  • Page 58
  • Current page 59
  • Page 60
  • Page 61
  • Page 62
  • Page 63
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet