High-resolution, low-latency, bunch-by-bunch feedback systems for nanobeam production and stabilization
JACoW Publishing, Geneva, Switzerland (2021) 458-465
Abstract:
High-precision intra-bunch-train beam orbit feedback correction systems have been developed and tested in the ATF2 beamline of the Accelerator Test Facility at the High Energy Accelerator Research Organization in Japan. Two systems are presented: 1) The vertical position of the bunch measured at two beam stripline position monitors (BPMs) is used to calculate a pair of kicks which are applied to the next bunch using two upstream kickers, thereby correcting both the vertical position and trajectory angle. This system was optimized so as to stabilize the beam offset at the feedback BPMs to better than 350 nm, yielding a local trajectory angle correction to within 250 nrad. Measurements with a beam size monitor at the focal point (IP) demonstrate that reducing the trajectory jitter of the beam by a factor of 4 also reduces the observed wakefield-induced increase in the measured beam size as a function of beam charge by a factor of c. 1.6. 2) High-resolution cavity BPMs were used to provide local beam stabilization in the IP region. The BPMs were demonstrated to achieve an operational resolution of ~20 nm. With the application of single-BPM and two-BPM feedback, beam stabilization of below 50 nm and 41 nm respectively has been achieved with a closed-loop latency of 232 ns.Methods for extremely sparse-angle proton tomography
PHYSICAL REVIEW E American Physical Society (APS) 104:4 (2021) 45201
Abstract:
Proton radiography is a widely fielded diagnostic used to measure magnetic structures in plasma. The deflection of protons with multi-MeV kinetic energy by the magnetic fields is used to infer their path-integrated field strength. Here the use of tomographic methods is proposed for the first time to lift the degeneracy inherent in these path-integrated measurements, allowing full reconstruction of spatially resolved magnetic field structures in three dimensions. Two techniques are proposed which improve the performance of tomographic reconstruction algorithms in cases with severely limited numbers of available probe beams, as is the case in laser-plasma interaction experiments where the probes are created by short, high-power laser pulse irradiation of secondary foil targets. A new configuration allowing production of more proton beams from a single short laser pulse is also presented and proposed for use in tandem with these analytical advancements.Simulation and experimental study of proton bunch self-modulation in plasma with linear density gradients
Physical Review Accelerators and Beams American Physical Society 24:10 (2021) 101301
Abstract:
We present numerical simulations and experimental results of the self-modulation of a long proton bunch in a plasma with linear density gradients along the beam path. Simulation results agree with the experimental results reported [F. Braunmller, T. Nechaeva et al. (AWAKE Collaboration), Phys. Rev. Lett. 125, 264801 (2020)]: with negative gradients, the charge of the modulated bunch is lower than with positive gradients. In addition, the bunch modulation frequency varies with gradient. Simulation results show that dephasing of the wakefields with respect to the relativistic protons along the plasma is the main cause for the loss of charge. The study of the modulation frequency reveals details about the evolution of the self-modulation process along the plasma. In particular for negative gradients, the modulation frequency across time-resolved images of the bunch indicates the position along the plasma where protons leave the wakefields. Simulations and experimental results are in excellent agreement.Consolidation and future upgrades to the CLEAR user facility at CERN
JACoW Publishing, Geneva, Switzerland (2021) 2700-2703