Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Philip Burrows

Professor of Physics

Sub department

  • Particle Physics
Philip.Burrows@physics.ox.ac.uk
Telephone: 01865 (2)73451
Denys Wilkinson Building, room 615a
  • About
  • Publications

Luminosity performance studies of the Compact Linear Collider with intra-train feedback system at the interaction point

Journal of Instrumentation 5:9 (2010)

Authors:

J Resta-López, PN Burrows, G Christian

Abstract:

To achieve the design luminosity at future linear colliders, control of beam stability at the sub-nanometre level at the interaction point will be necessary. Any source of beam motion which results in relative vertical offsets of the two beams at the interaction point may significantly reduce the luminosity from the nominal value. Beam-based intra-train feedback systems located in the interaction region are foreseen to correct the relative beam-beam offset and thus to steer the two beams into collision. These feedback systems must be capable of acting within the bunch train. In addition, these feedback systems might considerably help to relax the tight stability tolerances required for the final doublet magnets. For the Compact Linear Collider (CLIC), the extremely short nominal bunch spacing (0.5 ns) and very short nominal pulse duration (156 ns) make the intratrain feedback implementation technically very challenging. In this paper the conceptual design of an intra-train feedback system for the CLIC interaction point is described. Results of luminosity performance simulations are presented and discussed for different scenarios of ground motion. We also show how the intra-train feedback system can help to relax the very tight tolerances of the vertical vibration on the CLIC final doublet quadrupoles. © 2010 IOP Publishing Ltd and SISSA.
More details from the publisher

Development of a Fast, Single-pass, Micron-resolution Beam Position Monitor Signal Processor: Beam Test Results from ATF2

(2010) 1152-1152

Authors:

Philip Burrows, others

Latest Beam Test Results from ATF2 with the Font ILC Prototype Intra-train Beam Feedback Systems

(2010) 2788-2788

Authors:

Philip Burrows, others

Luminosity performance studies of the compact linear collider with intra-train feedback system at the interaction point

JINST 5 (2010) 09007-09007

Authors:

J Resta-Lopez, PN Burrows, G Christian
More details from the publisher
More details

Present status and first results of the final focus beam line at the KEK Accelerator Test Facility

Phys. Rev. ST Accel. Beams 13 (2010) 042801-042801

Authors:

P Bambade, others
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • Current page 39
  • Page 40
  • Page 41
  • Page 42
  • Page 43
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet