Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Simon Calcutt

Emeritus

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Planetary atmosphere observation analysis
  • Solar system
  • Space instrumentation
  • Planetary surfaces
simon.calcutt@physics.ox.ac.uk
Telephone: 01865 (2)72916
Atmospheric Physics Clarendon Laboratory, room 308
  • About
  • Publications

CASTAway: An asteroid main belt tour and survey.

Advances in Space Research Elsevier 62:8 (2017) 1998-2025

Authors:

Neil E Bowles, C Snodgrass, JP Sanchez, Jessica A Arnold, P Eccleston, T Andert, A Probst, G Naletto, AC Vandaele, de de Leon, A Nathues, IR Thomas, N Thomas, L Jorda, V da Deppo, H Haack, SF Green, B Carry, Kerri L Donaldson Hanna, J Leif Jorgensen, A Kereszturi, FE DeMeo, JK Davies, Fraser Clarke, K Kinch, A Guilbert-Lepoutre, J Agarwal, AS Rivkin, P Pravec, S Fornasier, M Gravnik, RH Jones, N Murdoch, KH Joy, Matthias Tecza, Jennifer M Barnes, J Licandro, BT Greenhagen, Simon B Calcutt, Charlotte M Marriner, Tristram J Warren, I Tosh

Abstract:

CASTAway is a mission concept to explore our Solar System’s main asteroid belt. Asteroids and comets provide a window into the formation and evolution of our Solar System and the composition of these objects can be inferred from space-based remote sensing using spectroscopic techniques. Variations in composition across the asteroid populations provide a tracer for the dynamical evolution of the Solar System. The mission combines a long-range (point source) telescopic survey of over 10,000 objects, targeted close encounters with 10 – 20 asteroids and serendipitous searches to constrain the distribution of smaller (e.g. 10 m) size objects into a single concept. With a carefully targeted trajectory that loops through the asteroid belt, CASTAway would provide a comprehensive survey of the main belt at multiple scales. The scientific payload comprises a 50 cm diameter telescope that includes an integrated low-resolution (R = 30 – 100) spectrometer and visible context imager, a thermal (e.g. 6 – 16 μm) imager for use during the flybys, and modified star tracker cameras to detect small (~10 m) asteroids. The CASTAway spacecraft and payload have high levels of technology readiness and are designed to fit within the programmatic and cost caps for a European Space Agency medium class mission, whilst delivering a significant increase in knowledge of our Solar System.
More details from the publisher
Details from ORA
More details

Seismic Coupling of Short-Period Wind Noise Through Mars' Regolith for NASA's InSight Lander

SPACE SCIENCE REVIEWS 211:1-4 (2017) 485-500

Authors:

NA Teanby, J Stevanovic, J Wookey, N Murdoch, J Hurley, R Myhill, NE Bowles, SB Calcutt, WT Pike
More details from the publisher
Details from ORA
More details
More details

The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season

2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace) IEEE (2017) 249-255

Authors:

C Bettanini, F Esposito, S Debei, C Molfese, A Aboudan, GP Guizzo, E Friso, V Mennella, R Molinaro, S Silvestro, R Mugnuolo, A-M Harri, F Montmessin, Colin Wilson, I Arruego Rodriguez, S Abbaki, V Apestigue, G Bellucci, J-J Berthelier, O Karatekin, G Landis, R Lorenz, J Martinez, D Moehlmann

Abstract:

The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) experiment on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and direction, but also on solar irradiance, dust opacity and atmospheric electrification, to measure for the first time key parameters linked to hazard conditions for future manned explorations. Although with very limited mass and energy resources, DREAMS would be able to operate autonomously for at least two Martian days (sols) after landing in a very harsh environment as it was supposed to land on Mars during the dust storm season (October 2016 in Meridiani Planum) relying on its own power supply. ExoMars mission was successfully launched on 14th March 2016 and Schiaparelli entered the Mars atmosphere on October 20th beginning its `six minutes of terror' journey to the surface. Unfortunately, some unexpected behavior during the parachuted descent caused an unrecoverable critical condition in navigation system of the lander driving to a destructive crash on the surface. The adverse sequence of events at 4 km altitude triggered the transition of the lander in surface operative mode, commanding switch on the DREAMS instrument, which was therefore able to correctly power on and send back housekeeping data. This proved the nominal performance of all DREAMS hardware before touchdown demonstrating the highest TRL of the unit for future missions. This paper describes this experiment in terms of scientific goals, design, performances, testing and operational capabilities with an overview of in flight performances and available mission data.
More details from the publisher
Details from ORA
More details
More details

Composite infrared spectrometer (CIRS) on Cassini: publisher's note.

Applied Optics Optica Publishing Group 56:21 (2017) 5897

Authors:

DE Jennings, FM Flasar, VG Kunde, CA Nixon, ME Segura, PN Romani, N Gorius, S Albright, JC Brasunas, RC Carlson, AA Mamoutkine, E Guandique, MS Kaelberer, S Aslam, RK Achterberg, GL Bjoraker, CM Anderson, V Cottini, JC Pearl, MD Smith, BE Hesman, RD Barney, S Calcutt, TJ Vellacott, LJ Spilker, SG Edgington, SM Brooks, P Ade, PJ Schinder, A Coustenis, R Courtin, G Michel, R Fettig, S Pilorz, C Ferrari
More details from the publisher
More details
More details

Composite infrared spectrometer (CIRS) on Cassini

Applied Optics 56:18 (2017) 5274-5294

Authors:

DE Jennings, FM Flasar, VG Kunde, CA Nixon, ME Segura, PN Romani, N Gorius, S Albright, JC Brasunas, RC Carlson, AA Mamoutkine, E Guandique, MS Kaelberer, S Aslam, RK Achterberg, GL Bjoraker, CM Anderson, V Cottini, JC Pearl, MD Smith, BE Hesman, RD Barney, S Calcutt, TJ Vellacott, LJ Spilker, SG Edgington, SM Brooks, P Ade, PJ Schinder, A Coustenis, R Courtin, G Michel, R Fettig, S Pilorz, C Ferrari

Abstract:

© 2017 Optical Society of America. The Cassini spacecraft orbiting Saturn carries the composite infrared spectrometer (CIRS) designed to study thermal emission from Saturn and its rings and moons. CIRS, a Fourier transform spectrometer, is an indispensable part of the payload providing unique measurements and important synergies with the other instruments. It takes full advantage of Cassini's 13-year-long mission and surpasses the capabilities of previous spectrometers on Voyager 1 and 2. The instrument, consisting of two interferometers sharing a telescope and a scan mechanism, covers over a factor of 100 in wavelength in the mid and far infrared. It is used to study temperature, composition, structure, and dynamics of the atmospheres of Jupiter, Saturn, and Titan, the rings of Saturn, and surfaces of the icy moons. CIRS has returned a large volume of scientific results, the culmination of over 30 years of instrument development, operation, data calibration, and analysis. As Cassini and CIRS reach the end of their mission in 2017, we expect that archived spectra will be used by scientists for many years to come.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet