Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Simon Calcutt

Emeritus

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Planetary atmosphere observation analysis
  • Solar system
  • Space instrumentation
  • Planetary surfaces
simon.calcutt@physics.ox.ac.uk
Telephone: 01865 (2)72916
Atmospheric Physics Clarendon Laboratory, room 308
  • About
  • Publications

The formation and evolution of Titan's winter polar vortex.

Nature Communications Nature Publishing Group 8:1 (2017) 1586

Authors:

NA Teanby, B Bézard, S Vinatier, M Sylvestre, CA Nixon, Patrick GJ Irwin, RJ de Kok, Simon B Calcutt, FM Flasar

Abstract:

Saturn's largest moon Titan has a substantial nitrogen-methane atmosphere, with strong seasonal effects, including formation of winter polar vortices. Following Titan's 2009 northern spring equinox, peak solar heating moved to the northern hemisphere, initiating south-polar subsidence and winter polar vortex formation. Throughout 2010-2011, strengthening subsidence produced a mesospheric hot-spot and caused extreme enrichment of photochemically produced trace gases. However, in 2012 unexpected and rapid mesospheric cooling was observed. Here we show extreme trace gas enrichment within the polar vortex dramatically increases mesospheric long-wave radiative cooling efficiency, causing unusually cold temperatures 2-6 years post-equinox. The long time-frame to reach a stable vortex configuration results from the high infrared opacity of Titan's trace gases and the relatively long atmospheric radiative time constant. Winter polar hot-spots have been observed on other planets, but detection of post-equinox cooling is so far unique to Titan.
More details from the publisher
Details from ORA
More details
More details

Seismic Coupling of Short-Period Wind Noise Through Mars' Regolith for NASA's InSight Lander

SPACE SCIENCE REVIEWS 211:1-4 (2017) 485-500

Authors:

NA Teanby, J Stevanovic, J Wookey, N Murdoch, J Hurley, R Myhill, NE Bowles, SB Calcutt, WT Pike
More details from the publisher
Details from ORA
More details
More details

The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season

2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace) IEEE (2017) 249-255

Authors:

C Bettanini, F Esposito, S Debei, C Molfese, A Aboudan, GP Guizzo, E Friso, V Mennella, R Molinaro, S Silvestro, R Mugnuolo, A-M Harri, F Montmessin, Colin Wilson, I Arruego Rodriguez, S Abbaki, V Apestigue, G Bellucci, J-J Berthelier, O Karatekin, G Landis, R Lorenz, J Martinez, D Moehlmann

Abstract:

The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) experiment on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and direction, but also on solar irradiance, dust opacity and atmospheric electrification, to measure for the first time key parameters linked to hazard conditions for future manned explorations. Although with very limited mass and energy resources, DREAMS would be able to operate autonomously for at least two Martian days (sols) after landing in a very harsh environment as it was supposed to land on Mars during the dust storm season (October 2016 in Meridiani Planum) relying on its own power supply. ExoMars mission was successfully launched on 14th March 2016 and Schiaparelli entered the Mars atmosphere on October 20th beginning its `six minutes of terror' journey to the surface. Unfortunately, some unexpected behavior during the parachuted descent caused an unrecoverable critical condition in navigation system of the lander driving to a destructive crash on the surface. The adverse sequence of events at 4 km altitude triggered the transition of the lander in surface operative mode, commanding switch on the DREAMS instrument, which was therefore able to correctly power on and send back housekeeping data. This proved the nominal performance of all DREAMS hardware before touchdown demonstrating the highest TRL of the unit for future missions. This paper describes this experiment in terms of scientific goals, design, performances, testing and operational capabilities with an overview of in flight performances and available mission data.
More details from the publisher
Details from ORA
More details
More details

Composite infrared spectrometer (CIRS) on Cassini: publisher's note.

Applied optics 56:21 (2017) 5897

Authors:

DE Jennings, FM Flasar, VG Kunde, CA Nixon, ME Segura, PN Romani, N Gorius, S Albright, JC Brasunas, RC Carlson, AA Mamoutkine, E Guandique, MS Kaelberer, S Aslam, RK Achterberg, GL Bjoraker, CM Anderson, V Cottini, JC Pearl, MD Smith, BE Hesman, RD Barney, S Calcutt, TJ Vellacott, LJ Spilker, SG Edgington, SM Brooks, P Ade, PJ Schinder, A Coustenis, R Courtin, G Michel, R Fettig, S Pilorz, C Ferrari

Abstract:

This publisher's note renumbers the reference list in Appl. Opt.56, 5274 (2017)APOPAI0003-693510.1364/AO.56.005274.
More details from the publisher
More details
More details

Composite infrared spectrometer (CIRS) on Cassini

Applied Optics 56:18 (2017) 5274-5294

Authors:

DE Jennings, FM Flasar, VG Kunde, CA Nixon, ME Segura, PN Romani, N Gorius, S Albright, JC Brasunas, RC Carlson, AA Mamoutkine, E Guandique, MS Kaelberer, S Aslam, RK Achterberg, GL Bjoraker, CM Anderson, V Cottini, JC Pearl, MD Smith, BE Hesman, RD Barney, S Calcutt, TJ Vellacott, LJ Spilker, SG Edgington, SM Brooks, P Ade, PJ Schinder, A Coustenis, R Courtin, G Michel, R Fettig, S Pilorz, C Ferrari

Abstract:

© 2017 Optical Society of America. The Cassini spacecraft orbiting Saturn carries the composite infrared spectrometer (CIRS) designed to study thermal emission from Saturn and its rings and moons. CIRS, a Fourier transform spectrometer, is an indispensable part of the payload providing unique measurements and important synergies with the other instruments. It takes full advantage of Cassini's 13-year-long mission and surpasses the capabilities of previous spectrometers on Voyager 1 and 2. The instrument, consisting of two interferometers sharing a telescope and a scan mechanism, covers over a factor of 100 in wavelength in the mid and far infrared. It is used to study temperature, composition, structure, and dynamics of the atmospheres of Jupiter, Saturn, and Titan, the rings of Saturn, and surfaces of the icy moons. CIRS has returned a large volume of scientific results, the culmination of over 30 years of instrument development, operation, data calibration, and analysis. As Cassini and CIRS reach the end of their mission in 2017, we expect that archived spectra will be used by scientists for many years to come.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet