Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Michele Cappellari

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Extremely Large Telescope
michele.cappellari@physics.ox.ac.uk
Telephone: 01865 (2)73647
Denys Wilkinson Building, room 755
  • About
  • Publications

Census and classification of low-surface-brightness structures in nearby early-type galaxies from the MATLAS survey

(2020)

Authors:

Michal Bílek, Pierre-Alain Duc, Jean-Charles Cuillandre, Stephen Gwyn, Michele Cappellari, David V Bekaert, Paolo Bonfini, Theodoros Bitsakis, Sanjaya Paudel, Davor Krajnović, Patrick R Durrell, Francine Marleau
More details from the publisher

Revealing the Intermediate Mass Black Hole at the Heart of Dwarf Galaxy NGC404 with Sub-parsec Resolution ALMA Observations

Monthly Notices of the Royal Astronomical Society Oxford University Press 496:4 (2020) 4061-4078

Authors:

Martin Bureau, Michele Cappellari, Lijie Liu, Mark Smith

Abstract:

We estimate the mass of the intermediate-mass black hole at the heart of the dwarf elliptical galaxy NGC 404 using Atacama Large Millimeter/submillimeter Array (ALMA) observations of the molecular interstellar medium at an unprecedented linear resolution of ≈0.5 pc, in combination with existing stellar kinematic information. These ALMA observations reveal a central disc/torus of molecular gas clearly rotating around the black hole. This disc is surrounded by a morphologically and kinematically complex flocculent distribution of molecular clouds, that we resolve in detail. Continuum emission is detected from the central parts of NGC 404, likely arising from the Rayleigh–Jeans tail of emission from dust around the nucleus, and potentially from dusty massive star-forming clumps at discrete locations in the disc. Several dynamical measurements of the black hole mass in this system have been made in the past, but they do not agree. We show here that both the observed molecular gas and stellar kinematics independently require a ≈ 5 × 105 M black hole once we include the contribution of the molecular gas to the potential. Our best estimate comes from the high-resolution molecular gas kinematics, suggesting the black hole mass of this system is 5.5+4.1−3.8×105 M (at the 99% confidence level), in good agreement with our revised stellar kinematic measurement and broadly consistent with extrapolations from the black hole mass – velocity dispersion and black hole mass – bulge mass relations. This highlights the need to accurately determine the mass and distribution of each dynamically important component around intermediate-mass black holes when attempting to estimate their masses.
More details from the publisher
Details from ORA
More details

SDSS-IV MaNGA: stellar population correlates with stellar root-mean-square velocity Vrms gradients or total-density-profile slopes at fixed effective velocity dispersion σe

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 495:4 (2020) 4820-4827

Authors:

Shengdong Lu, Michele Cappellari, Shude Mao, Junqiang Ge, Ran Li
More details from the publisher
More details

Revealing the intermediate-mass black hole at the heart of the dwarf galaxy NGC 404 with sub-parsec resolution ALMA observations

(2020)

Authors:

Timothy A Davis, Dieu D Nguyen, Anil C Seth, Jenny E Greene, Kristina Nyland, Aaron J Barth, Martin Bureau, Michele Cappellari, Mark den Brok, Satoru Iguchi, Federico Lelli, Lijie Liu, Nadine Neumayer, Eve V North, Kyoko Onishi, Marc Sarzi, Mark D Smith, Thomas G Williams
More details from the publisher

The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES 249:1 (2020) ARTN 3

Authors:

Romina Ahumada, Carlos Allende Prieto, Andres Almeida, Friedrich Anders, Scott F Anderson, Brett H Andrews, Borja Anguiano, Riccardo Arcodia, Eric Armengaud, Marie Aubert, Santiago Avila, Vladimir Avila-Reese, Carles Badenes, Christophe Balland, Kat Barger, Jorge K Barrera-Ballesteros, Sarbani Basu, Julian Bautista, Rachael L Beaton, Timothy C Beers, B Izamar T Benavides, Chad F Bender, Mariangela Bernardi, Matthew Bershady, Florian Beutler, Christian Moni Bidin, Jonathan Bird, Dmitry Bizyaev, Guillermo A Blanc, Michael R Blanton, Mederic Boquien, Jura Borissova, Jo Bovy, Wn Brandt, Jonathan Brinkmann, Joel R Brownstein, Kevin Bundy, Martin Bureau, Adam Burgasser, Etienne Burtin, Mariana Cano-Diaz, Raffaella Capasso, Michele Cappellari, Ricardo Carrera, Solene Chabanier, William Chaplin, Michael Chapman, Brian Cherinka, Cristina Chiappini, Peter Doohyun Choi

Abstract:

© 2020. The Author(s). Published by the American Astronomical Society.. This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 24
  • Page 25
  • Page 26
  • Page 27
  • Current page 28
  • Page 29
  • Page 30
  • Page 31
  • Page 32
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet