Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Michele Cappellari

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Extremely Large Telescope
michele.cappellari@physics.ox.ac.uk
Telephone: 01865 (2)73647
Denys Wilkinson Building, room 755
  • About
  • Publications

First Gaia dynamical model of the Milky Way disc with six phase space coordinates: a test for galaxy dynamics

(2019)

Authors:

Maria Selina Nitschai, Michele Cappellari, Nadine Neumayer
More details from the publisher

The impact of AGN on stellar kinematics and orbits in simulated massive galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 489:2 (2019) 2702-2722

Authors:

M Frigo, T Naab, M Hirschmann, E Choi, RS Somerville, D Krajnovic, R Davé, Michele Cappellari

Abstract:

We present a series of 10 × 2 cosmological zoom simulations of the formation of massive galaxies with and without a model for active galactic nucleus (AGN) feedback. Differences in stellar population and kinematic properties are evaluated by constructing mock integral field unit maps. The impact of the AGN is weak at high redshift when all systems are mostly fast rotating and disc-like. After z ∼ 1 the AGN simulations result in lower mass, older, less metal rich, and slower rotating systems with less discy isophotes – in general agreement with observations. 2D kinematic maps of in situ and accreted stars show that these differences result from reduced in-situ star formation due to AGN feedback. A full analysis of stellar orbits indicates that galaxies simulated with AGN are typically more triaxial and have higher fractions of x-tubes and box orbits and lower fractions of z-tubes. This trend can also be explained by reduced late in-situ star formation. We introduce a global parameter, ξ3, to characterize the anticorrelation between the third-order kinematic moment h3 and the line-of-sight velocity (Vavg/σ), and compare to ATLAS3D observations. The kinematic correlation parameter ξ3 might be a useful diagnostic for large integral field surveys as it is a kinematic indicator for intrinsic shape and orbital content.
More details from the publisher
Details from ORA
More details

Rejuvenated galaxies with very old bulges at the origin of the bending of the main sequence and of the ‘green valley’

Monthly Notices of the Royal Astronomical Society Oxford University Press 489:1 (2019) 1265-1290

Authors:

C Mancini, E Daddi, S Juneau, A Renzini, G Rodighiero, Michele Cappellari, L Rodríguez-Muñoz, D Liu, M Pannella, I Baronchelli, A Franceschini, P Bergamini, C D’Eugenio, A Puglisi

Abstract:

We investigate the nature of star-forming galaxies with reduced specific star formation rate (sSFR) and high stellar masses, those ‘green valley’ objects that seemingly cause a reported bending, or flattening, of the star-forming main sequence. The fact that such objects host large bulges recently led some to suggest that the internal formation of bulges was a late event that induced the sSFRs of massive galaxies to drop in a slow downfall, and thus the main sequence to bend. We have studied in detail a sample of 10 galaxies at 0.45 < z < 1 with secure SFR from Herschel, deep Keck optical spectroscopy, and HST imaging from CANDELS allowing us to perform multiwavelength bulge to disc decomposition, and to derive star formation histories for the separated bulge and disc components. We find that the bulges hosted in these systems below main sequence are virtually all maximally old, with ages approaching the age of the Universe at the time of observation, while discs are young (〈 T50〉 ∼ 1.5 Gyr). We conclude that, at least based on our sample, the bending of the main sequence is, for a major part, due to rejuvenation, and we disfavour mechanisms that postulate the internal formation of bulges at late times. The very old stellar ages of our bulges suggest a number density of early-type galaxies at z = 1–3 higher than actually observed. If confirmed, this might represent one of the first direct validations of hierarchical assembly of bulges at high redshifts.
More details from the publisher
Details from ORA
More details

Efficient solution of the anisotropic spherically-aligned axisymmetric Jeans equations of stellar hydrodynamics for galactic dynamics

(2019)
More details from the publisher

Six new supermassive black hole mass determinations from adaptive-optics assisted SINFONI observations

Astronomy and Astrophysics EDP Sciences 625 (2019) A62

Authors:

S Thater, D Krajnovic, Michele Cappellari, TA Davis, PT De Zeeuw, RM McDermid, M Sarzi
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • Current page 31
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet