Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Michele Cappellari

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Extremely Large Telescope
michele.cappellari@physics.ox.ac.uk
Telephone: 01865 (2)73647
Denys Wilkinson Building, room 755
  • About
  • Publications

An oxford swift integral field spectroscopy study of 14 early-type galaxies in the coma cluster

Monthly Notices of the Royal Astronomical Society 425:2 (2012) 1521-1526

Authors:

N Scott, R Houghton, RL Davies, M Cappellari, N Thatte, F Clarke, M Tecza

Abstract:

As a demonstration of the capabilities of the new Oxford SWIFT integral field spectrograph, we present first observations for a set of 14 early-type galaxies in the core of the Coma cluster. Our data consist of I- and z-band spatially resolved spectroscopy obtained with the Oxford SWIFT spectrograph, combined with r-band photometry from the Sloan Digital Sky Survey archive for 14 early-type galaxies. We derive spatially resolved kinematics for all objects from observations of the calcium triplet absorption features at ∼8500Å. Using this kinematic information we classify galaxies as either fast rotators or slow rotators. We compare the fraction of fast and slow rotators in our sample, representing the densest environment in the nearby Universe, to results from the ATLAS3D survey, finding that the slow rotator fraction is ∼50per cent larger in the core of the Coma cluster than in the volume-limited ATLAS3D sample, a 1.2σ increase given our selection criteria. Comparing our sample to the Virgo cluster core only (which is 24 times less dense than the Coma core) we find no evidence of an increase in the slow rotator fraction. Combining measurements of the effective velocity dispersion σe with the photometric data we determine the Fundamental Plane for our sample of galaxies. We find that the use of the average velocity dispersion within 1 effective radius, σe, reduces the residuals by 13per cent with respect to comparable studies using central velocity dispersions, consistent with other recent integral field Fundamental Plane determinations. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.
More details from the publisher

The Atlas3D project - XV. Benchmark for early-type galaxies scaling relations from 260 dynamical models: mass-to-light ratio, dark matter, Fundamental Plane and Mass Plane

(2012)

Authors:

Michele Cappellari, Nicholas Scott, Katherine Alatalo, Leo Blitz, Maxime Bois, Frederic Bournaud, M Bureau, Alison F Crocker, Roger L Davies, Timothy A Davis, PT de Zeeuw, Pierre-Alain Duc, Eric Emsellem, Sadegh Khochfar, Davor Krajnovic, Harald Kuntschner, Richard M McDermid, Raffaella Morganti, Thorsten Naab, Tom Oosterloo, Marc Sarzi, Paolo Serra, Anne-Marie Weijmans, Lisa M Young
More details from the publisher

The Atlas3D project - XX. Mass-size and mass-sigma distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function

(2012)

Authors:

Michele Cappellari, Richard M McDermid, Katherine Alatalo, Leo Blitz, Maxime Bois, Frederic Bournaud, M Bureau, Alison F Crocker, Roger L Davies, Timothy A Davis, PT de Zeeuw, Pierre-Alain Duc, Eric Emsellem, Sadegh Khochfar, Davor Krajnovic, Harald Kuntschner, Raffaella Morganti, Thorsten Naab, Tom Oosterloo, Marc Sarzi, Nicholas Scott, Paolo Serra, Anne-Marie Weijmans, Lisa M Young
More details from the publisher

Deep near-infrared spectroscopy of passively evolving galaxies at z≳1.4

Astrophysical Journal 755:1 (2012)

Authors:

M Onodera, A Renzini, M Carollo, M Cappellari, C Mancini, V Strazzullo, E Daddi, N Arimoto, R Gobat, Y Yamada, HJ McCracken, O Ilbert, P Capak, A Cimatti, M Giavalisco, AM Koekemoer, X Kong, S Lilly, K Motohara, K Ohta, DB Sanders, N Scoville, N Tamura, Y Taniguchi

Abstract:

We present the results of new near-IR spectroscopic observations of passive galaxies at z ≳ 1.4 in a concentration of BzK-selected galaxies in the COSMOS field. The observations have been conducted with Subaru/MOIRCS, and have resulted in absorption lines and/or continuum detection for 18 out of 34 objects. This allows us to measure spectroscopic redshifts for a sample that is almost complete to K AB = 21. COSMOS photometric redshifts are found in fair agreement overall with the spectroscopic redshifts, with a standard deviation of 0.05; however, 30% of objects have photometric redshifts systematically underestimated by up to 25%. We show that these systematic offsets in photometric redshifts can be removed by using these objects as a training set. All galaxies fall in four distinct redshift spikes at z = 1.43, 1.53, 1.67, and 1.82, with this latter one including seven galaxies. SED fits to broadband fluxes indicate stellar masses in the range of 4-40 × 10 10 M and that star formation was quenched 1Gyr before the cosmic epoch at which they are observed. The spectra of several individual galaxies have allowed us to measure their HδF indices and the strengths of the 4000 Å break, which confirms their identification as passive galaxies, as does a composite spectrum resulting from the co-addition of 17 individual spectra. The effective radii of the galaxies have been measured on the COSMOS HST/ACS i F814W-band image, confirming the coexistence at these redshifts of passive galaxies, which are substantially more compact than their local counterparts with others that follow the local effective radius-stellar mass relation. For the galaxy with the best signal-to-noise spectrum we were able to measure a velocity dispersion of 270 ± 105kms-1 (error bar including systematic errors), indicating that this galaxy lies closely on the virial relation given its stellar mass and effective radius. © 2012 The American Astronomical Society. All rights reserved.
More details from the publisher

AGN feedback driven molecular outflow in NGC 1266

Proceedings of the International Astronomical Union 8:S290 (2012) 175-176

Authors:

K Alatalo, KE Nyland, G Graves, S Deustua, J Wrobel, LM Young, TA Davis, M Bureau, E Bayet, L Blitz, M Bois, F Bournaud, M Cappellari, RL Davies, PT De Zeeuw, E Emsellem, S Khochfar, D Krajnovic, H Kuntschner, S Martín, RM Mcdermid, R Morganti, T Naab, M Sarzi, N Scott, P Serra, A Weijmans

Abstract:

NGC 1266 is a nearby field galaxy observed as part of the ATLAS 3D survey (Cappellari et al. 2011). NGC 1266 has been shown to host a compact (< 200 pc) molecular disk and a mass-loaded molecular outflow driven by the AGN (Alatalo et al. 2011). Very Long Basline Array (VLBA) observations at 1.65 GHz revealed a compact (diameter < 1.2 pc), high brightness temperature continuum source most consistent with a low-level AGN origin. The VLBA continuum source is positioned at the center of the molecular disk and may be responsible for the expulsion of molecular gas in NGC 1266. Thus, the candidate AGN-driven molecular outflow in NGC 1266 supports the picture in which AGNs do play a significant role in the quenching of star formation and ultimately the evolution of the red sequence of galaxies. © International Astronomical Union 2013.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 70
  • Page 71
  • Page 72
  • Page 73
  • Current page 74
  • Page 75
  • Page 76
  • Page 77
  • Page 78
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet