Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Michele Cappellari

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Extremely Large Telescope
michele.cappellari@physics.ox.ac.uk
Telephone: 01865 (2)73647
Denys Wilkinson Building, room 755
  • About
  • Publications

An Oxford SWIFT Integral Field Spectroscopy study of 14 early-type galaxies in the Coma cluster

ArXiv 1205.4299 (2012)

Authors:

Nicholas Scott, Ryan CW Houghton, Roger L Davies, Michele Cappellari, Niranjan Thatte, Fraser J Clarke, Matthias Tecza

Abstract:

As a demonstration of the capabilities of the new Oxford SWIFT integral field spectrograph, we present first observations for a set of 14 early-type galaxies in the core of the Coma cluster. Our data consist of I- and z-band spatially resolved spectroscopy obtained with the Oxford SWIFT spectrograph, combined with r-band photometry from the SDSS archive for 14 early- type galaxies. We derive spatially resolved kinematics for all objects from observations of the calcium triplet absorption features at \sim 8500 {AA} . Using this kinematic information we classify galaxies as either Fast Rotators or Slow Rotators. We compare the fraction of fast and slow rotators in our sample, representing the densest environment in the nearby Universe, to results from the ATLAS3D survey, finding the slow rotator fraction is \sim 50 per cent larger in the core of the Coma cluster than in the Virgo cluster or field, a 1.2 {\sigma} increase given our selection criteria. Comparing our sample to the Virgo cluster core only (which is 24 times less dense than the Coma core) we find no evidence of an increase in the slow rotator fraction. Combining measurements of the effective velocity dispersion {\sigma_e} with the photometric data we determine the Fundamental Plane for our sample of galaxies. We find the use of the average velocity dispersion within 1 effective radius, {\sigma_e}, reduces the residuals by 13 per cent with respect to comparable studies using central velocity dispersions, consistent with other recent integral field Fundamental Plane determinations.
Details from ArXiV
More details from the publisher
More details

Monster black holes

(2012)
More details from the publisher

Systematic variation of the stellar initial mass function in early-type galaxies.

Nature 484:7395 (2012) 485-488

Authors:

Michele Cappellari, Richard M McDermid, Katherine Alatalo, Leo Blitz, Maxime Bois, Frédéric Bournaud, M Bureau, Alison F Crocker, Roger L Davies, Timothy A Davis, PT de Zeeuw, Pierre-Alain Duc, Eric Emsellem, Sadegh Khochfar, Davor Krajnović, Harald Kuntschner, Pierre-Yves Lablanche, Raffaella Morganti, Thorsten Naab, Tom Oosterloo, Marc Sarzi, Nicholas Scott, Paolo Serra, Anne-Marie Weijmans, Lisa M Young

Abstract:

Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars, which depends on the present number of each type of star in the galaxy. The present number depends on the stellar initial mass function (IMF), which describes the distribution of stellar masses when the population formed, and knowledge of it is critical to almost every aspect of galaxy evolution. More than 50 years after the first IMF determination, no consensus has emerged on whether it is universal among different types of galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot both be universal, but they could not convincingly discriminate between the two possibilities. Only recently were indications found that massive elliptical galaxies may not have the same IMF as the Milky Way. Here we report a study of the two-dimensional stellar kinematics for the large representative ATLAS(3D) sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass, using detailed dynamical models. We find a strong systematic variation in IMF in early-type galaxies as a function of their stellar mass-to-light ratios, producing differences of a factor of up to three in galactic stellar mass. This implies that a galaxy's IMF depends intimately on the galaxy's formation history.
More details from the publisher
More details
Details from ArXiV

The SAURON project-XXI. The spatially-resolved UV-line strength relations of early-type galaxies

(2012)

Authors:

Hyunjin Jeong, Sukyoung K Yi, Martin Bureau, Roger L Davies, Roland Bacon, Michele Cappellari, P Tim de Zeeuw, Eric Emsellem, Jesus Falcon-Barroso, Davor Krajnovic, Harald Kuntschner, Richard M McDermid, Reynier F Peletier, Marc Sarzi, Remco CE van den Bosch, Glenn van de Ven
More details from the publisher

The ATLAS 3D project - XI. Dense molecular gas properties of CO-luminous early-type galaxies

Monthly Notices of the Royal Astronomical Society 421:2 (2012) 1298-1314

Authors:

A Crocker, M Krips, M Bureau, LM Young, TA Davis, E Bayet, K Alatalo, L Blitz, M Bois, F Bournaud, M Cappellari, RL Davies, PT de Zeeuw, PA Duc, E Emsellem, S Khochfar, D Krajnović, H Kuntschner, PY Lablanche, RM Mcdermid, R Morganti, T Naab, T Oosterloo, M Sarzi, N Scott, P Serra, AM Weijmans

Abstract:

Surveying 18 12CO-bright galaxies from the ATLAS 3D early-type galaxy sample with the Institut de Radio Astronomie Millimétrique (IRAM) 30-m telescope, we detect 13CO(1-0) and 13CO(2-1) in all 18 galaxies, HCN(1-0) in 12/18 and HCO +(1-0) in 10/18. We find that the line ratios 12CO(1-0)/ 13CO(1-0) and 12CO(1-0)/HCN(1-0) are clearly correlated with several galaxy properties: total stellar mass, luminosity-weighted mean stellar age, molecular-to-atomic gas ratio, dust temperature and dust morphology. We suggest that these correlations are primarily governed by the optical depth in the 12CO lines; interacting, accreting and/or starbursting early-type galaxies have more optically thin molecular gas while those with settled dust and gas discs host optically thick molecular gas. The ranges of the integrated line intensity ratios generally overlap with those of spirals, although we note some outliers in the 12CO(1-0)/ 13CO(1-0), 12CO(2-1)/ 13CO(2-1) and HCN/HCO +(1-0) ratios. In particular, three galaxies are found to have very low 12CO(1-0)/ 13CO(1-0) and 12CO(2-1)/ 13CO(2-1) ratios. Such low ratios may signal particularly stable molecular gas which creates stars less efficiently than 'normal' (i.e. below Schmidt-Kennicutt prediction), consistent with the low dust temperatures seen in these galaxies. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 73
  • Page 74
  • Page 75
  • Page 76
  • Current page 77
  • Page 78
  • Page 79
  • Page 80
  • Page 81
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet