Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof John Cardy FRS

Emeritus Professor

Sub department

  • Rudolf Peierls Centre for Theoretical Physics
john.cardy@all-souls.ox.ac.uk
  • About
  • Publications

Finite temperature entanglement negativity in conformal field theory

Journal of Physics A: Mathematical and Theoretical IOP Publishing 48:1 (2015) 015006

Authors:

Pasquale Calabrese, John Cardy, Erik Tonni
More details from the publisher

Thermalization and Revivals after a Quantum Quench in Conformal Field Theory

Physical Review Letters American Physical Society (APS) 112:22 (2014) 220401
More details from the publisher
More details
More details

Universal Thermal Corrections to Single Interval Entanglement Entropy for Two Dimensional Conformal Field Theories

Physical Review Letters American Physical Society (APS) 112:17 (2014) 171603

Authors:

John Cardy, Christopher P Herzog
More details from the publisher
More details
More details

Entanglement negativity in extended systems: A field theoretical approach

Journal of Statistical Mechanics: Theory and Experiment 2013:2 (2013)

Authors:

P Calabrese, J Cardy, E Tonni

Abstract:

We report on a systematic approach for the calculation of the negativity in the ground state of a one-dimensional quantum field theory. The partial transpose ρAT2 of the reduced density matrix of a subsystem A = A1 ∪ A2 is explicitly constructed as an imaginary-time path integral and from this the replicated traces Tr(ρAT2)n are obtained. The logarithmic negativity ε = log ∥ρAT2x∥ is then the continuation to n → 1 of the traces of the even powers. For pure states, this procedure reproduces the known results.We then apply this method to conformally invariant field theories (CFTs) in several different physical situations for infinite and finite systems and without or with boundaries. In particular, in the case of two adjacent intervals of lengths ℓ1; ℓ2 in an infinite system, we derive the result ε ∼ (c/4)ln(ℓ1ℓ2=(ℓ1+ℓ2) ), where c is the central charge. For the more complicated case of two disjoint intervals, we show that the negativity depends only on the harmonic ratio of the four end points and so is manifestly scale invariant. We explicitly calculate the scale invariant functions for the replicated traces in the case of the CFT for the free compactified boson, but we have not so far been able to obtain the n→1 continuation for the negativity even in the limit of large compactification radius. We have checked all our findings against exact numerical results for the harmonic chain which is described by a non-compactified free boson. © 2013 IOP Publishing Ltd and SISSA Medialab srl.
More details from the publisher
More details

Logarithmic conformal field theories as limits of ordinary CFTs and some physical applications

JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL 46:49 (2013) ARTN 494001
More details from the publisher

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet