Stable witness-beam formation in a beam-driven plasma cathode
Physical Review Accelerators and Beams American Physical Society 24:10 (2021) 101302
Abstract:
Electron beams to be accelerated in beam-driven plasma wakes are commonly formed by a photocathode and externally injected into the wakefield of a preceding bunch. Alternatively, using the plasma itself as a cathode offers the possibility of generating ultrashort, low-emittance beams by trapping and accelerating electrons from the ambient plasma background. Here, we present a beam-driven plasma cathode realized via laser-triggered density-downramp injection, showing stable beam formation over more than a thousand consecutive events with an injection probability of 95%. The plasma cathode is highly tunable, resulting in the injection of electron bunches of tens of pC of charge, energies of up to 79 MeV, and relative energy spreads as low as a few percent. The stability of the injected beams was sufficiently high to experimentally determine their normalized emittance of 9.3 μm rms with a multishot method.Simulation and experimental study of proton bunch self-modulation in plasma with linear density gradients
Physical Review Accelerators and Beams American Physical Society 24:10 (2021) 101301
Abstract:
We present numerical simulations and experimental results of the self-modulation of a long proton bunch in a plasma with linear density gradients along the beam path. Simulation results agree with the experimental results reported [F. Braunmller, T. Nechaeva et al. (AWAKE Collaboration), Phys. Rev. Lett. 125, 264801 (2020)]: with negative gradients, the charge of the modulated bunch is lower than with positive gradients. In addition, the bunch modulation frequency varies with gradient. Simulation results show that dephasing of the wakefields with respect to the relativistic protons along the plasma is the main cause for the loss of charge. The study of the modulation frequency reveals details about the evolution of the self-modulation process along the plasma. In particular for negative gradients, the modulation frequency across time-resolved images of the bunch indicates the position along the plasma where protons leave the wakefields. Simulations and experimental results are in excellent agreement.Transition between instability and seeded self-modulation of a relativistic particle bunch in plasma
Physical Review Letters American Physical Society 126:16 (2021) 164802
Abstract:
We use a relativistic ionization front to provide various initial transverse wakefield amplitudes for the self-modulation of a long proton bunch in plasma. We show experimentally that, with sufficient initial amplitude [≥(4.1±0.4) MV/m], the phase of the modulation along the bunch is reproducible from event to event, with 3%-7% (of 2π) rms variations all along the bunch. The phase is not reproducible for lower initial amplitudes. We observe the transition between these two regimes. Phase reproducibility is essential for deterministic external injection of particles to be accelerated.Progress of the FLASHForward X-2 high-beam-quality, high-efficiency plasma-accelerator experiment
Proceedings of Science 398 (2021)
Abstract:
FLASHForward is an experimental facility at DESY dedicated to beam-driven plasma-accelerator research. The X-2 experiment aims to demonstrate acceleration with simultaneous beam-quality preservation and high energy efficiency in a compact plasma stage. We report on the completed commissioning, first experimental results, ongoing research topics, as well as plans for future upgrades.Energy-Spread Preservation and High Efficiency in a Plasma-Wakefield Accelerator.
Physical review letters 126:1 (2021) 014801