Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Dr James Chappell

Visitor

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics
james.chappell@physics.ox.ac.uk
Clarendon Laboratory, room Simon
ORCID
Dr Chappell awarded Culham Thesis Prize
  • About
  • Publications

Analysis of proton bunch parameters in the AWAKE experiment

Journal of Instrumentation IOP Publishing 16 (2021) P11031

Abstract:

A precise characterization of the incoming proton bunch parameters is required to accurately simulate the self-modulation process in the Advanced Wakefield Experiment (AWAKE). This paper presents an analysis of the parameters of the incoming proton bunches used in the later stages of the AWAKE Run 1 data-taking period. The transverse structure of the bunch is observed at multiple positions along the beamline using scintillating or optical transition radiation screens. The parameters of a model that describes the bunch transverse dimensions and divergence are fitted to represent the observed data using Bayesian inference. The analysis is tested on simulated data and then applied to the experimental data.
More details from the publisher
Details from ORA
More details

Stable witness-beam formation in a beam-driven plasma cathode

Physical Review Accelerators and Beams American Physical Society 24:10 (2021) 101302

Authors:

A Knetsch, B Sheeran, L Boulton, P Niknejadi, K Poder, L Schaper, M Zeng, S Bohlen, G Boyle, T Brummer, James Chappell, R D'Arcy, S Diederichs, B Foster, Mj Garland, P Gonzalez Caminal, B Hidding, V Libov, Ca Lindstrom, A Martinez de la Ossa, M Meisel, T Parikh, B Schmidt, S Schroder, G Tauscher, S Wesch, P Winkler, Jc Wood, J Osterhoff

Abstract:

Electron beams to be accelerated in beam-driven plasma wakes are commonly formed by a photocathode and externally injected into the wakefield of a preceding bunch. Alternatively, using the plasma itself as a cathode offers the possibility of generating ultrashort, low-emittance beams by trapping and accelerating electrons from the ambient plasma background. Here, we present a beam-driven plasma cathode realized via laser-triggered density-downramp injection, showing stable beam formation over more than a thousand consecutive events with an injection probability of 95%. The plasma cathode is highly tunable, resulting in the injection of electron bunches of tens of pC of charge, energies of up to 79 MeV, and relative energy spreads as low as a few percent. The stability of the injected beams was sufficiently high to experimentally determine their normalized emittance of 9.3 μm rms with a multishot method.
More details from the publisher
Details from ORA
More details

Simulation and experimental study of proton bunch self-modulation in plasma with linear density gradients

Physical Review Accelerators and Beams American Physical Society 24:10 (2021) 101301

Authors:

Pi Morales Guzmán, P Muggli, R Agnello, Philip Burrows

Abstract:

We present numerical simulations and experimental results of the self-modulation of a long proton bunch in a plasma with linear density gradients along the beam path. Simulation results agree with the experimental results reported [F. Braunmller, T. Nechaeva et al. (AWAKE Collaboration), Phys. Rev. Lett. 125, 264801 (2020)]: with negative gradients, the charge of the modulated bunch is lower than with positive gradients. In addition, the bunch modulation frequency varies with gradient. Simulation results show that dephasing of the wakefields with respect to the relativistic protons along the plasma is the main cause for the loss of charge. The study of the modulation frequency reveals details about the evolution of the self-modulation process along the plasma. In particular for negative gradients, the modulation frequency across time-resolved images of the bunch indicates the position along the plasma where protons leave the wakefields. Simulations and experimental results are in excellent agreement.
More details from the publisher
Details from ORA
More details

Transition between instability and seeded self-modulation of a relativistic particle bunch in plasma

Physical Review Letters American Physical Society 126:16 (2021) 164802

Authors:

F Batsch, P Muggli, R Agnello, Cc Ahdida, Mc Amoedo Goncalves, Y Andrebe, O Apsimon, R Apsimon, A-M Bachmann, Ma Baistrukov, P Blanchard, F Braunmüller, Pn Burrows, B Buttenschön, A Caldwell, J Chappell, E Chevallay, M Chung, Da Cooke, H Damerau, C Davut, G Demeter, Hl Deubner, S Doebert, J Farmer, A Fasoli, Vn Fedosseev, R Fiorito, Ra Fonseca, F Friebel, I Furno, L Garolfi, S Gessner, I Gorgisyan, Aa Gorn, E Granados, M Granetzny, T Graubner, O Grulke, E Gschwendtner, V Hafych, A Helm, Jr Henderson, M Hüther, I Yu Kargapolov, S-Y Kim, F Kraus, M Krupa, Rl Ramjiawan

Abstract:

We use a relativistic ionization front to provide various initial transverse wakefield amplitudes for the self-modulation of a long proton bunch in plasma. We show experimentally that, with sufficient initial amplitude [≥(4.1±0.4)  MV/m], the phase of the modulation along the bunch is reproducible from event to event, with 3%-7% (of 2π) rms variations all along the bunch. The phase is not reproducible for lower initial amplitudes. We observe the transition between these two regimes. Phase reproducibility is essential for deterministic external injection of particles to be accelerated.
More details from the publisher
Details from ORA
More details
More details

Progress of the FLASHForward X-2 high-beam-quality, high-efficiency plasma-accelerator experiment

Proceedings of Science 398 (2021)

Authors:

CA Lindstrøm, J Beinortaite, J Björklund Svensson, L Boulton, J Chappell, JM Garland, P Gonzalez, G Loisch, F Peña, L Schaper, B Schmidt, S Schröder, S Wesch, J Wood, J Osterhoff, R D'Arcy

Abstract:

FLASHForward is an experimental facility at DESY dedicated to beam-driven plasma-accelerator research. The X-2 experiment aims to demonstrate acceleration with simultaneous beam-quality preservation and high energy efficiency in a compact plasma stage. We report on the completed commissioning, first experimental results, ongoing research topics, as well as plans for future upgrades.

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet