Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Richard Chatterjee

Graduate student

Research theme

  • Climate physics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Planetary Climate Dynamics
richard.chatterjee@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory, room 206
  • About
  • Teaching
  • Publications

Self-limited tidal heating and prolonged magma oceans in the L 98-59 system

(2025)

Authors:

Harrison Nicholls, Claire Marie Guimond, Hamish CFC Hay, Richard D Chatterjee, Tim Lichtenberg, Raymond T Pierrehumbert
Details from ArXiV

The Cosmic Shoreline Revisited: A Metric for Atmospheric Retention Informed by Hydrodynamic Escape

arXiv:2504.19872 [astro-ph.EP]

Authors:

Xuan Ji, Richard D. Chatterjee, Brandon Park Coy, Edwin S. Kite

Abstract:

The "cosmic shoreline", a semi-empirical relation that separates airless worlds from worlds with atmospheres as proposed by Zahnle & Catling (2017), is now guiding large-scale JWST surveys aimed at detecting rocky exoplanet atmospheres. We expand upon this framework by revisiting the shorelines using existing hydrodynamic escape models applied to Earth-like, Venus-like, and steam atmospheres for rocky exoplanets, and we estimate energy-limited escape rates for CH4 atmospheres. We determine the critical instellation required for atmospheric retention by calculating time-integrated atmospheric mass loss. Our analysis introduces a new metric for target selection in the Rocky Worlds DDT and refines expectations for rocky planet atmosphere searches in Cycle 4. Exploring initial volatile inventory ranging from 0.01% to 1% of planetary mass, we find that its variation prevents the definition of a unique clear-cut shoreline, though non-linear escape physics can reduce this sensitivity to initial conditions. Additionally, uncertain distributions of high-energy stellar evolution and planet age further blur the critical instellations for atmospheric retention, yielding broad shorelines. Hydrodynamic escape models find atmospheric retention is markedly more favorable for higher-mass planets orbiting higher-mass stars, with carbon-rich atmospheres remaining plausible for 55 Cancri e despite its extreme instellation. Dedicated modeling efforts are needed to better constrain the escape dynamics of secondary atmospheres, such as the role of atomic line cooling, especially for Earth-sized planets. Finally, we illustrate how density measurements can be used to statistically test the existence of the cosmic shorelines, emphasizing the need for more precise mass and radius measurements.
More details from the publisher
Full PDF text
Details from ArXiV

The Cosmic Shoreline Revisited: A Metric for Atmospheric Retention Informed by Hydrodynamic Escape

ArXiv 2504.19872 (2025)

Authors:

Xuan Ji, Richard D Chatterjee, Brandon Park Coy, Edwin S Kite
Details from ArXiV

Exoplanetary Ionospheric Temperatures on the Edge of Airlessness

Copernicus Publications (2025)

Authors:

Richard D Chatterjee, Sarah Blumenthal, Raymond T Pierrehumbert
More details from the publisher

Novel Physics of Escaping Secondary Atmospheres May Shape the Cosmic Shoreline

arXiv:2412.05188 [astro-ph.EP]

Authors:

Richard D. Chatterjee, Raymond T. Pierrehumbert

Abstract:

Recent James Webb Space Telescope observations of cool, rocky exoplanets reveal a probable lack of thick atmospheres, suggesting prevalent escape of the secondary atmospheres formed after losing primordial hydrogen. Yet, simulations indicate that hydrodynamic escape of secondary atmospheres, composed of nitrogen and carbon dioxide, requires intense fluxes of ionizing radiation (XUV) to overcome the effects of high molecular weight and efficient line cooling. This transonic outflow of hot, ionized metals (not hydrogen) presents a novel astrophysical regime ripe for exploration. We introduce an analytic framework to determine which planets retain or lose their atmospheres, positioning them on either side of the cosmic shoreline. We model the radial structure of escaping atmospheres as polytropic expansions - power-law relationships between density and temperature driven by local XUV heating. Our approach diagnoses line cooling with a three-level atom model and incorporates how ion-electron interactions reduce mean molecular weight. Crucially, hydrodynamic escape onsets for a threshold XUV flux dependent upon the atmosphere's gravitational binding. Ensuing escape rates either scale linearly with XUV flux when weakly ionized (energy-limited) or are controlled by a collisional-radiative thermostat when strongly ionized. Thus, airlessness is determined by whether the XUV flux surpasses the critical threshold during the star's active periods, accounting for expendable primordial hydrogen and revival by volcanism. We explore atmospheric escape from Young-Sun Mars and Earth, LHS-1140 b and c, and TRAPPIST-1 b. Our modeling characterizes the bottleneck of atmospheric loss on the occurrence of observable Earth-like habitats and offers analytic tools for future studies.
More details from the publisher
Full PDF text
Details from ArXiV

Pagination

  • Current page 1
  • Page 2
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet