The Cosmic Shoreline Revisited: A Metric for Atmospheric Retention Informed by Hydrodynamic Escape
Copernicus Publications (2025)
Abstract:
The “cosmic shoreline”, a semi-empirical relation that separates airless worlds from worlds with atmospheres as proposed by Zahnle & Catling (2017), is now guiding large-scale JWST surveys aimed at detecting rocky exoplanet atmospheres. We expand upon this framework by revisiting the shorelines using existing hydrodynamic escape models applied to Earth-like, Venus-like, and steam atmospheres for rocky exoplanets, and we estimate energy-limited escape rates for CH4 atmospheres. We determine the critical instellation required for atmospheric retention by calculating time-integrated atmospheric mass loss. Our analysis introduces a new metric for target selection in the Rocky Worlds DDT and refines expectations for rocky planet atmosphere searches in Cycle 4. Exploring initial volatile inventory ranging from 0.01% to 1% of planetary mass, we find that its variation prevents the definition of a unique clear-cut shoreline, though non-linear escape physics can reduce this sensitivity to initial conditions. Additionally, uncertain distributions of high-energy stellar evolution and planet age further blur the critical instellations for atmospheric retention, yielding broad shorelines. Hydrodynamic escape models find atmospheric retention is markedly more favorable for higher-mass planets orbiting higher-mass stars, with carbon-rich atmospheres remaining plausible for 55 Cancri e despite its extreme instellation. Dedicated modelling efforts are needed to better constrain the escape dynamics of secondary atmospheres, such as the role of atomic line cooling, especially for Earth-sized planets. Finally, we illustrate how density measurements can be used to statistically test the existence of the cosmic shorelines, emphasizing the need for more precise mass and radius measurements.Volatile-rich evolution of molten super-Earth L 98-59 d
(2025)
JWST NIRISS transmission spectroscopy of the super-Earth GJ 357b, a favourable target for atmospheric retention
Monthly Notices of the Royal Astronomical Society Oxford University Press 540:4 (2025) 3677-3692
Abstract:
We present a JWST Near Infrared Imager and Slitless Spectrograph/Single Object Slitless Spectroscopy transmission spectrum of the super-Earth GJ 357 b: the first atmospheric observation of this exoplanet. Despite missing the first 40 per cent of the transit due to using an out-of-date ephemeris, we still recover a transmission spectrum that does not display any clear signs of atmospheric features. We perform a search for Gaussian-shaped absorption features within the data but find that this analysis yields comparable fits to the observations as a flat line. We compare the transmission spectrum to a grid of atmosphere models and reject, to 3 confidence, atmospheres with metallicities solar (4 g mol−1) with clouds at pressures down to 0.01 bar. We analyse how the retention of a secondary atmosphere on GJ 357 b may be possible due to its higher escape velocity compared to an Earth-sized planet and the exceptional inactivity of its host star relative to other M2.5V stars. The star’s XUV luminosity decays below the threshold for rapid atmospheric escape early enough that the volcanic revival of an atmosphere of several bars of CO is plausible, though subject to considerable uncertainty. Finally, we model the feasibility of detecting an atmosphere on GJ 357 b with MIRI/LRS, MIRI photometry, and NIRSpec/G395H. We find that, with two eclipses, it would be possible to detect features indicative of an atmosphere or surface. Further to this, with three to four transits, it would be possible to detect a 1 bar nitrogen-rich atmosphere with 1000 ppm of CO.JWST NIRISS Transmission Spectroscopy of the Super-Earth GJ 357b, a Favourable Target for Atmospheric Retention
(2025)
Self-limited tidal heating and prolonged magma oceans in the L 98-59 system
(2025)