Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Rendering of ELT instruments on ELT Nasmyth Platform (credit ESO/L. Calçada)

Rendering of ELT instruments on ELT Nasmyth Platform

Credit: credit ESO/L. Calçada

Dr Fraser Clarke

Senior Programme Manager for Space Instrumentation

Research theme

  • Instrumentation
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Space instrumentation
fraser.clarke@physics.ox.ac.uk
  • About
  • Publications

An off-the-shelf guider for the Palomar 200-inch telescope: interfacing amateur astronomy software with professional telescopes for an easy life

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 9147 (2014) 91472g-91472g-7

Authors:

Fraser Clarke, James Lynn, Niranjan Thatte, Matthias Tecza
More details from the publisher
More details

The spectrograph units for the HARMONI integral field spectrograph

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 9147 (2014) 914797-914797-8

Authors:

Kieran O'Brien, Jamie R Allen, James D Lynn, Niranjan A Thatte, Ian Bryson, Fraser Clarke, Hermine Schnetler, Matthias Tecza
More details from the publisher
More details

Wavefront sensing from the image domain with the Oxford-SWIFT integral field spectrograph

(2014)

Authors:

Benjamin Pope, Niranjan Thatte, Rick Burruss, Matthias Tecza, Fraser Clarke, Garret Cotter
More details from the publisher

The mass-metallicity relation at z 1.4 revealed with Subaru/FMOS

Monthly Notices of the Royal Astronomical Society 437:4 (2014) 3647-3663

Authors:

K Yabe, K Ohta, F Iwamuro, M Akiyama, N Tamura, S Yuma, M Kimura, N Takato, Y Moritani, M Sumiyoshi, T Maihara, J Silverman, G Dalton, I Lewis, D Bonfield, H Lee, E Curtis-Lake, E Macaulay, F Clarke

Abstract:

We present a stellar mass-metallicity relation at z ~ 1.4 with an unprecedentedly large sample of ~340 star-forming galaxies obtained with FibreMulti-Object Spectrograph (FMOS) on the Subaru Telescope. We observed K-band selected galaxies at 1.2 ≤ zph ≤ 1.6 in the Subaru XMM-Newton Deep Survey/Ultra Deep Survey fields with M*> 109.5M⊙, and expected F(Hα) > 5 × 10-17 erg s-1 cm-2. Among the observed ~1200 targets, 343 objects show significant Ha emission lines. The gas-phase metallicity is obtained from [N II] λ6584/Hα line ratio, after excluding possible active galactic nuclei. Due to the faintness of the [N II] λ6584 lines, we apply the stacking analysis and derive the mass-metallicity relation at z ~ 1.4. Our results are compared to past results at different redshifts in the literature. The mass-metallicity relation at z ~ 1.4 is located between those at z ~ 0.8 and z ~ 2.2; it is found that the metallicity increases with decreasing redshift from z ~ 3 to z ~ 0 at fixed stellar mass. Thanks to the large size of the sample, we can study the dependence of the mass-metallicity relation on various galaxy physical properties. The average metallicity from the stacked spectra is close to the local Fundamental Metallicity Relation (FMR) in the higher metallicity part but >0.1 dex higher in metallicity than the FMR in the lower metallicity part.We find that galaxies with larger E(B -V), B -R and R -H colours tend to show higher metallicity by ~0.05 dex at fixed stellar mass. We also find relatively clearer size dependence that objects with smaller half-light radius tend to show higher metallicity by ~0.1 dex at fixed stellar mass, especially in the low-mass part. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
More details from the publisher
Details from ORA
More details

The Gemini NICI Planet-Finding Campaign: The Frequency of Planets around Young Moving Group Stars

(2013)

Authors:

Beth A Biller, Michael C Liu, Zahed Wahhaj, Eric L Nielsen, Thomas L Hayward, Jared R Males, Andrew Skemer, Laird M Close, Mark Chun, Christ Ftaclas, Fraser Clarke, Niranjan Thatte, Evgenya L Shkolnik, I Neill Reid, Markus Hartung, Alan Boss, Douglas Lin, Silvia HP Alencar, Elisabete de Gouveia Dal Pino, Jane Gregorio-Hetem, Douglas Toomey
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Current page 16
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet