Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Professor Amanda Cooper-Sarkar

Emeritus Professor

Research theme

  • Fundamental particles and interactions

Sub department

  • Particle Physics

Research groups

  • ATLAS
Amanda.Cooper-Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73406
Denys Wilkinson Building, room 659
  • About
  • Publications

Measurement of coincident photon-initiated processes in ultra-peripheral Pb+Pb collisions with the ATLAS detector

ArXiv 2504.07795 (2025)
Details from ArXiV

Measurements of Higgs boson production via gluon-gluon fusion and vector-boson fusion using $H\rightarrow WW^\ast \rightarrow \ellν\ellν$ decays in $pp$ collisions with the ATLAS detector and their effective field theory interpretations

ArXiv 2504.07686 (2025)
Details from ArXiV

Measurements of WH and ZH production with Higgs boson decays into bottom quarks and direct constraints on the charm Yukawa coupling in 13 TeV pp collisions with the ATLAS detector

Journal of High Energy Physics Springer 2025:4 (2025) 75

Authors:

G Aad, E Aakvaag, B Abbott, S Abdelhameed, K Abeling, NJ Abicht, SH Abidi, M Aboelela, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, A Ackermann, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras

Abstract:

A study of the Higgs boson decaying into bottom quarks (H → bb¯) and charm quarks (H → cc¯) is performed, in the associated production channel of the Higgs boson with a W or Z boson, using 140 fb−1 of proton-proton collision data at s = 13 TeV collected by the ATLAS detector. The individual production of WH and ZH with H → bb¯ is established with observed (expected) significances of 5.3 (5.5) and 4.9 (5.6) standard deviations, respectively. Differential cross-section measurements of the gauge boson transverse momentum within the simplified template cross-section framework are performed in a total of 13 kinematical fiducial regions. The search for the H → cc¯ decay yields an observed (expected) upper limit at 95% confidence level of 11.5 (10.6) times the Standard Model prediction. The results are also used to set constraints on the charm coupling modifier, resulting in |κc| < 4.2 at 95% confidence level. Combining the H → bb¯ and H → cc¯ measurements constrains the absolute value of the ratio of Higgs-charm and Higgs-bottom coupling modifiers (|κc/κb|) to be less than 3.6 at 95% confidence level.
More details from the publisher
Details from ORA
More details

Measurement of high-mass $t\bar{t}\ell^{+}\ell^{-}$ production and lepton flavour universality-inspired effective field theory interpretations at $\sqrt{s}=13$ TeV with the ATLAS detector

ArXiv 2504.05919 (2025)
Details from ArXiV

Measurement of substructure-dependent suppression of large-radius jets with charged particles in Pb+Pb collisions with ATLAS

ArXiv 2504.04805 (2025)
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet