Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Professor Amanda Cooper-Sarkar

Emeritus Professor

Research theme

  • Fundamental particles and interactions

Sub department

  • Particle Physics

Research groups

  • ATLAS
Amanda.Cooper-Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73406
Denys Wilkinson Building, room 659
  • About
  • Publications

Search for supersymmetry using vector boson fusion signatures and missing transverse momentum in pp collisions at s = 13 TeV with the ATLAS detector

Journal of High Energy Physics Springer 2024:12 (2024) 116

Authors:

G Aad, E Aakvaag, B Abbott, S Abdelhameed, K Abeling, NJ Abicht, SH Abidi, M Aboelela, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, A Ackermann, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras

Abstract:

This paper presents a search for supersymmetric particles in models with highly compressed mass spectra, in events consistent with being produced through vector boson fusion. The search uses 140 fb−1 of proton-proton collision data at s = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider. Events containing at least two jets with a large gap in pseudorapidity, large missing transverse momentum, and no reconstructed leptons are selected. A boosted decision tree is used to separate events consistent with the production of supersymmetric particles from those due to Standard Model backgrounds. The data are found to be consistent with Standard Model predictions. The results are interpreted using simplified models of R-parity-conserving supersymmetry in which the lightest supersymmetric partner is a bino-like neutralino with a mass similar to that of the lightest chargino and second-to-lightest neutralino, both of which are wino-like. Lower limits at 95% confidence level on the masses of next-to-lightest supersymmetric partners in this simplified model are established between 117 and 120 GeV when the lightest supersymmetric partners are within 1 GeV in mass.
More details from the publisher
Details from ORA
More details
More details

Cross-section measurements for the production of a $W$-boson in association with high-transverse-momentum jets in $pp$ collisions at $\sqrt{s}$= 13 TeV with the ATLAS detector

ArXiv 2412.11644 (2024)
Details from ArXiV

Test of lepton flavour universality in $W$-boson decays into electrons and $τ$-leptons using $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

ArXiv 2412.11989 (2024)
Details from ArXiV

Precision calibration of calorimeter signals in the ATLAS experiment using an uncertainty-aware neural network

ArXiv 2412.0437 (2024)
Details from ArXiV

Using pile-up collisions as an abundant source of low-energy hadronic physics processes in ATLAS and an extraction of the jet energy resolution

Journal of High Energy Physics Springer 2024:12 (2024) 32

Authors:

G Aad, E Aakvaag, B Abbott, S Abdelhameed, K Abeling, NJ Abicht, SH Abidi, M Aboelela, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, A Ackermann, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras

Abstract:

During the 2015–2018 data-taking period, the Large Hadron Collider delivered proton-proton bunch crossings at a centre-of-mass energy of 13 TeV to the ATLAS experiment at a rate of roughly 30 MHz, where each bunch crossing contained an average of 34 independent inelastic proton-proton collisions. The ATLAS trigger system selected roughly 1 kHz of these bunch crossings to be recorded to disk. Offline algorithms then identify one of the recorded collisions as the collision of interest for subsequent data analysis, and the remaining collisions are referred to as pile-up. Pile-up collisions represent a trigger-unbiased dataset, which is evaluated to have an integrated luminosity of 1.33 pb−1 in 2015–2018. This is small compared with the normal trigger-based ATLAS dataset, but when combined with vertex-by-vertex jet reconstruction it provides up to 50 times more dijet events than the conventional single-jet-trigger-based approach, and does so without adding any additional cost or requirements on the trigger system, readout, or storage. The pile-up dataset is validated through comparisons with a special trigger-unbiased dataset recorded by ATLAS, and its utility is demonstrated by means of a measurement of the jet energy resolution in dijet events, where the statistical uncertainty is significantly reduced for jet transverse momenta below 65 GeV.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet