Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr. Alexander Cooper

Hintze Fellow

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • Pulsars, transients and relativistic astrophysics
alexander.cooper@physics.ox.ac.uk
Denys Wilkinson Building, room 562
Personal Website
  • About
  • Publications

Beyond the Rotational Deathline: Radio Emission from Ultra-long Period Magnetars

ArXiv 2406.04135 (2024)

Authors:

AJ Cooper, Z Wadiasingh
Details from ArXiV

A probe of the maximum energetics of fast radio bursts through a prolific repeating source

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1937

Authors:

OS Ould-Boukattine, P Chawla, JWT Hessels, AJ Cooper, MP Gawroński, W Herrmann, DM Hewitt, J Huang, D Huppenkothen, F Kirsten, DC Konijn, K Nimmo, Z Pleunis, W Puchalska, MP Snelders

Abstract:

Abstract Fast radio bursts (FRBs) are sufficiently energetic to be detectable from luminosity distances up to at least seven billion parsecs (redshift z > 1). Probing the maximum energies and luminosities of FRBs constrains their emission mechanism and cosmological population. Here we investigate the maximum energetics of a highly active repeater, FRB 20220912A, using 1,500 h of observations. We detect 130 high-energy bursts and find a break in the burst energy distribution, with a flattening of the power-law slope at higher energy – consistent with the behaviour of another highly active repeater, FRB 20201124A. There is a roughly equal split of integrated burst energy between the low- and high-energy regimes. Furthermore, we model the rate of the highest-energy bursts and find a turnover at a characteristic spectral energy density of $E^{\textrm {char}}_{\nu } = 2.09^{+3.78}_{-1.04}\times 10^{32}$ erg Hz−1. This characteristic maximum energy agrees well with observations of apparently one-off FRBs, suggesting a common physical mechanism for their emission. The extreme burst energies push radiation and source models to their limit: at this burst rate a typical magnetar (B = 1015 G) would deplete the energy stored in its magnetosphere in ∼ 2150 h, assuming a radio efficiency εradio = 10−5. We find that the high-energy bursts (Eν > 3 × 1030 erg Hz−1) play an important role in exhausting the energy budget of the source.
More details from the publisher

Gamma-ray lines, electron–positron annihilation, and possible radio emission in X-ray pulsars

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 543:4 (2025) 3993-4002

Authors:

Alexander A Mushtukov, Emir Tataroglu, Alex J Cooper, Sergey S Tsygankov

Abstract:

ABSTRACT Accretion on to neutron stars (NSs) in X-ray pulsars (XRPs) results in intense X-ray emission, and under specific conditions, high-energy nuclear interactions that produce gamma-ray photons at discrete energies. These interactions are enabled by the high free-fall velocities of accreting nuclei near the NS surface and give rise to characteristic gamma-ray lines, notably at 2.2, 5.5, and 67.5 MeV. We investigate the production mechanisms of these lines and estimate the resulting gamma-ray luminosities, accounting for the suppression effects of radiative deceleration in bright XRPs and the creation of electron–positron pairs in strong magnetic fields. The resulting annihilation of these pairs leads to a secondary emission line at ${\sim} 511$ keV. We also discuss the possibility that non-stationary pair creation in the polar cap region could drive coherent radio emission, though its detectability in accreting systems remains uncertain. Using a numerical framework incorporating general relativistic light bending and magnetic absorption, we compute the escape fraction of photons and distinguish between actual and apparent gamma-ray luminosities. Our results identify the parameter space – defined by magnetic field strength, accretion luminosity, and NS compactness – where these gamma-ray signatures may be observable by upcoming MeV gamma-ray missions. In particular, we highlight the diagnostic potential of detecting gravitationally redshifted gamma-ray lines and annihilation features for probing the mass–radius relation and magnetospheric structure of NSs.
More details from the publisher
More details

Relativistic precessing jets powered by an accreting neutron star

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 544:1 (2025) L37-L44

Authors:

FJ Cowie, RP Fender, I Heywood, AK Hughes, K Savard, PA Woudt, F Carotenuto, AJ Cooper, J van den Eijnden, KVS Gasealahwe, SE Motta, P Saikia

Abstract:

Precessing relativistic jets launched by compact objects are rarely directly measured, and present an invaluable opportunity to better understand many features of astrophysical jets. In this Letter we present MeerKAT radio observations of the neutron star X-ray binary system (NSXB) Circinus X-1 (Cir X-1). We observe a curved S-shaped morphology on scales in the radio emission around Cir X-1. We identify flux density and position changes in the S-shaped emission on year time-scales, robustly showing its association with relativistic jets. The jets of Cir X-1 are still propagating with mildly relativistic velocities from the core, the first time such large scale jets have been seen from a NSXB. The position angle of the jet axis is observed to vary on year time-scales, over an extreme range of at least . The morphology and position angle changes of the jet are best explained by a smoothly changing launch direction, verifying suggestions from previous literature, and indicating that precession of the jets is occurring. Steady precession of the jet is one interpretation of the data, and if occurring, we constrain the precession period and half-opening angle to yr and , respectively, indicating precession in a different parameter space to similar known objects such as SS 433.
More details from the publisher
Details from ORA

Joint Radiative and Kinematic Modelling of X-ray Binary Ejecta: Energy Estimate and Reverse Shock Detection

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1085

Authors:

AJ Cooper, JH Matthews, F Carotenuto, R Fender, GP Lamb, TD Russell, N Sarin, K Savard, AA Zdziarski

Abstract:

Abstract Black hole X-ray binaries in outburst launch discrete, large-scale jet ejections which can propagate to parsec scales. The kinematics of these ejecta appear to be well described by relativistic blast wave models original devised for gamma-ray burst afterglows. In previous kinematic-only modelling, a crucial degeneracy prevented the initial ejecta energy and the interstellar medium density from being accurately determined. In this work, we present the first joint Bayesian modelling of the radiation and kinematics of a large-scale jet ejection from the X-ray binary MAXI J1535-571. We demonstrate that a reverse shock powers the bright, early ejecta emission. The joint model breaks the energetic degeneracy, and we find the ejecta has an initial energy of E0 ∼ 3 × 1043 erg, and propagates into a low density interstellar medium of nism ∼ 4 × 10−5 cm−3. The ejecta is consistent with being launched perpendicular to the disc and could be powered by an efficient conversion of available accretion power alone. This work lays the foundation for future parameter estimation studies using all available data of X-ray binary jet ejecta.
More details from the publisher

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet