Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr. Alexander Cooper

Hintze Fellow

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • Pulsars, transients and relativistic astrophysics
alexander.cooper@physics.ox.ac.uk
Denys Wilkinson Building, room 562
Personal Website
  • About
  • Publications

Identification of the Optical Counterpart of the Fast X-Ray Transient EP240414a

The Astrophysical Journal Letters American Astronomical Society 978:2 (2025) l21

Authors:

S Srivastav, T-W Chen, JH Gillanders, L Rhodes, SJ Smartt, ME Huber, A Aryan, S Yang, A Beri, AJ Cooper, M Nicholl, KW Smith, HF Stevance, F Carotenuto, KC Chambers, A Aamer, CR Angus, MD Fulton, T Moore, IA Smith, DR Young, T de Boer, H Gao, C-C Lin, T Lowe, EA Magnier, P Minguez, Y-C Pan, RJ Wainscoat
More details from the publisher
More details

Constraining the physical properties of large-scale jets from black hole X-ray binaries and their impact on the local environment with blast-wave dynamical models

Monthly Notices of the Royal Astronomical Society Oxford University Press 533:4 (2024) 4188-4209

Authors:

Francesco Carotenuto, Robert Fender, Stéphane Corbel, Alexandra J Tetarenko, Andrzej A Zdziarski, Gulzar Shaik, Alexander J Cooper, Irene Di Palma

Abstract:

Relativistic discrete ejecta launched by black hole X-ray binaries (BH XRBs) can be observed to propagate up to parsec-scales from the central object. Observing the final deceleration phase of these jets is crucial to estimate their physical parameters and to reconstruct their full trajectory, with implications for the jet powering mechanism, composition, and formation. In this paper, we present the results of the modelling of the motion of the ejecta from three BH XRBs: MAXI J1820+070, MAXI J1535–571, and XTE J1752–223, for which high-resolution radio and X-ray observations of jets propagating up to ~15 arcsec (⁠~0.6 pc at 3 kpc) from the core have been published in the recent years. For each jet, we modelled its entire motion with a dynamical blast-wave model, inferring robust values for the jet Lorentz factor, inclination angle and ejection time. Under several assumptions associated to the ejection duration, the jet opening angle and the available accretion power, we are able to derive stringent constraints on the maximum jet kinetic energy for each source (between 1043 and 1044 erg, including also H1743–322), as well as placing interesting upper limits on the density of the ISM through which the jets are propagating (from nism≲0.4 cm−3 cm down to nism≲10−4 cm−3⁠). Overall, our results highlight the potential of applying models derived from gamma-ray bursts to the physics of jets from BH XRBs and support the emerging picture of these sources as preferentially embedded in low-density environments.
More details from the publisher
Details from ORA
More details

Beyond the Rotational Deathline: Radio Emission from Ultra-long Period Magnetars

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 533:2 (2024) 2133-2155

Authors:

AJ Cooper, Z Wadiasingh
More details from the publisher
More details

Discovery of the Optical and Radio Counterpart to the Fast X-Ray Transient EP 240315a

The Astrophysical Journal Letters American Astronomical Society 969:1 (2024) L14

Authors:

JH Gillanders, L Rhodes, S Srivastav, F Carotenuto, J Bright, ME Huber, HF Stevance, SJ Smartt, KC Chambers, T-W Chen, R Fender, A Andersson, AJ Cooper, PG Jonker, FJ Cowie, T de Boer, N Erasmus, MD Fulton, H Gao, J Herman, C-C Lin, T Lowe, EA Magnier, H-Y Miao

Abstract:

Fast X-ray Transients (FXTs) are extragalactic bursts of soft X-rays first identified ≳10 yr ago. Since then, nearly 40 events have been discovered, although almost all of these have been recovered from archival Chandra and XMM-Newton data. To date, optical sky surveys and follow-up searches have not revealed any multiwavelength counterparts. The Einstein Probe, launched in 2024 January, has started surveying the sky in the soft X-ray regime (0.5–4 keV) and will rapidly increase the sample of FXTs discovered in real time. Here we report the first discovery of both an optical and radio counterpart to a distant FXT, the fourth source publicly released by the Einstein Probe. We discovered a fast-fading optical transient within the 3′ localization radius of EP 240315a with the all-sky optical survey ATLAS, and our follow-up Gemini spectrum provides a redshift, z = 4.859 ± 0.002. Furthermore, we uncovered a radio counterpart in the S band (3.0 GHz) with the MeerKAT radio interferometer. The optical (rest-frame UV) and radio luminosities indicate that the FXT most likely originates from either a long gamma-ray burst or a relativistic tidal disruption event. This may be a fortuitous early mission detection by the Einstein Probe or may signpost a mode of discovery for high-redshift, high-energy transients through soft X-ray surveys, combined with locating multiwavelength counterparts.
More details from the publisher
Details from ORA
More details

GW190425: Pan-STARRS and ATLAS coverage of the skymap and limits on optical emission associated with FRB 20190425A

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 528:2 (2024) 2299-2307

Authors:

SJ Smartt, M Nicholl, S Srivastav, ME Huber, KC Chambers, KW Smith, DR Young, MD Fulton, JL Tonry, CW Stubbs, L Denneau, AJ Cooper, A Aamer, JP Anderson, A Andersson, J Bulger, T-W Chen, P Clark, T de Boer, H Gao, JH Gillanders, A Lawrence, CC Lin, TB Lowe, EA Magnier, P Minguez, T Moore, A Rest, L Shingles, R Siverd, IA Smith, B Stalder, HF Stevance, R Wainscoat, R Williams
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet