Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr. Alexander Cooper

Hintze Fellow

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • Pulsars, transients and relativistic astrophysics
alexander.cooper@physics.ox.ac.uk
Denys Wilkinson Building, room 562
Personal Website
  • About
  • Publications

Contemporaneous optical-radio observations of a fast radio burst in a close galaxy pair

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 538:3 (2025) 1800-1815

Authors:

KY Hanmer, I Pastor-Marazuela, J Brink, D Malesani, BW Stappers, PJ Groot, AJ Cooper, N Tejos, DAH Buckley, ED Barr, MC Bezuidenhout, S Bloemen, M Caleb, LN Driessen, R Fender, F Jankowski, M Kramer, DLA Pieterse, KM Rajwade, J Tian, PM Vreeswijk, R Wijnands, PA Woudt
More details from the publisher
More details

Joint Radiative and Kinematic Modelling of X-ray Binary Ejecta: Energy Estimate and Reverse Shock Detection

(2025)

Authors:

AJ Cooper, JH Matthews, F Carotenuto, R Fender, GP Lamb, TD Russell, N Sarin, K Savard
More details from the publisher
Details from ArXiV

Identification of the Optical Counterpart of the Fast X-Ray Transient EP240414a

The Astrophysical Journal Letters American Astronomical Society 978:2 (2025) L21

Authors:

S Srivastav, T-W Chen, JH Gillanders, L Rhodes, SJ Smartt, ME Huber, A Aryan, S Yang, A Beri, AJ Cooper, M Nicholl, KW Smith, HF Stevance, F Carotenuto, KC Chambers, A Aamer, CR Angus, MD Fulton, T Moore, IA Smith, DR Young, T de Boer, H Gao, C-C Lin

Abstract:

Fast X-ray transients (FXTs) are extragalactic bursts of X-rays first identified in archival X-ray data and are now routinely discovered in real time by the Einstein Probe, which is continuously surveying the night sky in the soft (0.5–4 keV) X-ray regime. In this Letter, we report the discovery of the second optical counterpart (AT 2024gsa) to an FXT (EP 240414a). EP 240414a is located at a projected radial separation of 27 kpc from its likely host galaxy at z = 0.4018 ± 0.0010. The optical light curve of AT 2024gsa displays three distinct components. The initial decay from our first observation is followed by a rebrightening episode, displaying a rapid rise in luminosity to an absolute magnitude Mr ∼ −21 after two rest-frame days. While the early optical luminosity and decline rate are similar to those of luminous fast blue optical transients, the color temperature of AT 2024gsa is distinctly red and we show that the peak flux is inconsistent with a thermal origin. The third component peaks at Mi ∼ −19 at ≳16 rest-frame days post-FXT, and is compatible with an emerging supernova. We fit the riz-band data with a series of power laws and find that the decaying components are in agreement with gamma-ray burst afterglow models, and that the rebrightening may originate from refreshed shocks. By considering EP 240414a in context with all previously reported known-redshift FXT events, we propose that Einstein Probe FXT discoveries may predominantly result from (high-redshift) gamma-ray bursts, and thus appear to be distinct from the previously discovered lower-redshift, lower-luminosity population of FXTs.
More details from the publisher
Details from ORA
More details

Constraining the physical properties of large-scale jets from black hole X-ray binaries and their impact on the local environment with blast-wave dynamical models

Monthly Notices of the Royal Astronomical Society Oxford University Press 533:4 (2024) 4188-4209

Authors:

Francesco Carotenuto, Robert Fender, Stéphane Corbel, Alexandra J Tetarenko, Andrzej A Zdziarski, Gulzar Shaik, Alexander J Cooper, Irene Di Palma

Abstract:

Relativistic discrete ejecta launched by black hole X-ray binaries (BH XRBs) can be observed to propagate up to parsec-scales from the central object. Observing the final deceleration phase of these jets is crucial to estimate their physical parameters and to reconstruct their full trajectory, with implications for the jet powering mechanism, composition, and formation. In this paper, we present the results of the modelling of the motion of the ejecta from three BH XRBs: MAXI J1820+070, MAXI J1535–571, and XTE J1752–223, for which high-resolution radio and X-ray observations of jets propagating up to ~15 arcsec (⁠~0.6 pc at 3 kpc) from the core have been published in the recent years. For each jet, we modelled its entire motion with a dynamical blast-wave model, inferring robust values for the jet Lorentz factor, inclination angle and ejection time. Under several assumptions associated to the ejection duration, the jet opening angle and the available accretion power, we are able to derive stringent constraints on the maximum jet kinetic energy for each source (between 1043 and 1044 erg, including also H1743–322), as well as placing interesting upper limits on the density of the ISM through which the jets are propagating (from nism≲0.4 cm−3 cm down to nism≲10−4 cm−3⁠). Overall, our results highlight the potential of applying models derived from gamma-ray bursts to the physics of jets from BH XRBs and support the emerging picture of these sources as preferentially embedded in low-density environments.
More details from the publisher
Details from ORA
More details

Beyond the Rotational Deathline: Radio Emission from Ultra-long Period Magnetars

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 533:2 (2024) 2133-2155

Authors:

AJ Cooper, Z Wadiasingh
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet