Synchrotron and inverse-compton emission from blazar jets - II. An accelerating jet model with a geometry set by observations of M87
Monthly Notices of the Royal Astronomical Society 429:2 (2013) 1189-1205
Abstract:
In this paper we develop the jet model of Potter & Cotter to include a magnetically dominated accelerating parabolic base transitioning to a slowly decelerating conical jet with a geometry set by recent radio observations of M87. We conserve relativistic energy-momentum and particle number along the jet and calculate the observed synchrotron emission from the jet by calculating the integrated line-of-sight synchrotron opacity through the jet in the rest frame of each section of plasma. We calculate the inverse-Compton emission from synchrotron, cosmic microwave background (CMB), accretion disc, starlight, broad-line region (BLR), dusty torus and narrow-line region photons by transforming into the rest frame of the plasma along the jet. We fit our model to simultaneous multi-wavelength observations of the Compton-dominant FSRQ type blazar PKS 0227-369, with a jet geometry set by M87 and an accelerating bulk Lorentz factor consistent with simulations and theory. We investigate models in which the jet comes into equipartition at different distances along the jet and equipartition is maintained via the conversion of jet bulk kinetic energy into particle acceleration. We find that the jet must still be magnetically dominated within the BLR and cannot be in equipartition due to the severe radiative energy losses. The model fits the observations, including radio data, very well if the jet comes into equipartition outside the BLR within the dusty torus (1.5 pc) or at further distances (34 pc). The fits require a high-power jet with a large bulk Lorentz factor observed close to the line of sight, consistent with our expectations for a Compton-dominant blazar. We find that our fit in which the jet comes into equipartition furthest along the jet, which has a jet with the geometry of M87 scaled linearly with black hole mass, has an inferred black hole mass close to previous estimates. This implies that the jet of PKS 0227 might be well described by the same jet geometry as M87. © 2012 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.Spectroscopy of the largest ever γ-ray-selected BL Lac sample
Astrophysical Journal 764:2 (2013)
Abstract:
We report on spectroscopic observations covering most of the 475 BL Lacs in the second Fermi Large Area Telescope (LAT) catalog of active galactic nuclei (AGNs). Including archival measurements (correcting several erroneous literature values) we now have spectroscopic redshifts for 44% of the BL Lacs. We establish firm lower redshift limits via intervening absorption systems and statistical lower limits via searches for host galaxies for an additional 51% of the sample leaving only 5% of the BL Lacs unconstrained. The new redshifts raise the median spectroscopic from 0.23 to 0.33 and include redshifts as large as z = 2.471. Spectroscopic redshift minima from intervening absorbers have , showing a substantial fraction at large z and arguing against strong negative evolution. We find that detected BL Lac hosts are bright ellipticals with black hole masses M • 108.5-109, substantially larger than the mean of optical AGNs and LAT Flat Spectrum Radio Quasar samples. A slow increase in M • with z may be due to selection bias. We find that the power-law dominance of the optical spectrum extends to extreme values, but this does not strongly correlate with the γ-ray properties, suggesting that strong beaming is the primary cause of the range in continuum dominance. © 2013. The American Astronomical Society. All rights reserved.Spectroscopy of The Largest Ever Gamma-ray Selected BL Lac Sample
(2013)
A compact high energy camera for the cherenkov telescope array
Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013 2013-October (2013)
Abstract:
The Compact High Energy Camera (CHEC) is a camera-development project involving UK, US, Japanese and Dutch institutes for the dual-mirror Small-Sized Telescopes (SST-2M) of the Cherenkov Telescope Array (CTA). Two CHEC prototypes, based on different photosensors are funded and will be assembled and tested in the UK over the next ≈18 months. CHEC is designed to record flashes of Cherenkov light lasting from a few to a hundred nanoseconds, with typical RMS image width and length of ∼ 0.2◦ × 1.0◦, and has a 9◦ field of view. The physical camera geometry is dictated by the telescope optics: a curved focal surface with radius of curvature 1 m and diameter ∼35 cm is required. CHEC is designed to work with both the ASTRI and GATE SST-2M telescope structures and will include an internal LED flasher system for calibration. The first CHEC prototype will be based on multi-anode photomultipliers (MAPMs) and the second on silicon photomultipliers (SiPMs or MPPCs). The first prototype will soon be installed on the ASTRI SST-2M prototype structure on Mt. Etna.Synchrotron and inverse-Compton emission from blazar jets - IV. BL Lac type blazars and the physical basis for the blazar sequence
Monthly Notices of the Royal Astronomical Society 436:1 (2013) 304-314