Gravitational waves from high-power twisted light
Physical Review D American Physical Society 110 (2024) 044023
Abstract:
Recent advances in high-energy and high-peak-power laser systems have opened up new possibilities for fundamental physics research. In this work, the potential of twisted light for the generation of gravitational waves in the high frequency regime is explored for the first time. Focusing on Bessel beams, novel analytic expressions and numerical computations for the generated metric perturbations and associated powers are presented. The gravitational peak intensity is shown to reach 1.44 × 10−5 W.m−2 close to the source, and 1.01 × 10−19 W.m−2 ten meters away. Compelling evidence is provided that the properties of the generated gravitational waves, such as frequency, polarisation states and direction of emission, are controllable by the laser pulse parameters and optical arrangements.Energy gain of wetted-foam implosions with auxiliary heating for inertial fusion studies
Plasma Physics and Controlled Fusion IOP Publishing 66:2 (2023) 025005
Abstract:
Low convergence ratio implosions (where wetted-foam layers are used to limit capsule convergence, achieving improved robustness to instability growth) and auxiliary heating (where electron beams are used to provide collisionless heating of a hotspot) are two promising techniques that are being explored for inertial fusion energy applications. In this paper, a new analytic study is presented to understand and predict the performance of these implosions. Firstly, conventional gain models are adapted to produce gain curves for fixed convergence ratios, which are shown to well-describe previously simulated results. Secondly, auxiliary heating is demonstrated to be well understood and interpreted through the burn-up fraction of the deuterium-tritium fuel, with the gradient of burn-up with respect to burn-averaged temperature shown to provide good qualitative predictions of the effectiveness of this technique for a given implosion. Simulations of auxiliary heating for a range of implosions are presented in support of this and demonstrate that this heating can have significant benefit for high gain implosions, being most effective when the burn-averaged temperature is between 5 and 20 keV.Relativistic harmonics in the efficiency limit
Nature Springer Nature