Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Dr Celine Crepisson

Senior Postdoctoral Researcher in Experimental High Energy Density Physics

Research theme

  • Lasers and high energy density science
  • Exoplanets and planetary physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
celine.crepisson@physics.ox.ac.uk
Clarendon Laboratory, room Simon
  • About
  • Publications

Phase transitions of Fe2O3 under laser shock compression

under review for Physical Review Letters

Authors:

A. Amouretti, C. Crépisson, S. Azadi, D. Cabaret, T. Campbell, D. A. Chin, B. Colin, G. R. Collins, L. Crandall, G. Fiquet, A. Forte, T. Gawne, F. Guyot, P. Heighway, H. Lee, D. McGonegle, B. Nagler, J. Pintor, D. Polsin, G. Rousse, Y. Shi, E. Smith, J. S. Wark, S. M. Vinko, M. Harmand

Abstract:

We present in-situ x-ray diffraction and velocity measurements of Fe2O3 under laser shock compression at pressures between 38-116 GPa. None of the phases reported by static compression studies were observed. Instead, we observed an isostructural phase transition from α-Fe2O3 to a new α′-Fe2O3 phase at a pressure of 50-62 GPa. The α′-Fe2O3 phase differs from α-Fe2O3 by an 11% volume drop and a different unit cell compressibility. We further observed a two-wave structure in the velocity profile, which can be related to an intermediate regime where both α and α′ phases coexist. Density functional theory calculations with a Hubbard parameter indicate that the observed unit cell volume drop can be associated with a spin transition following a magnetic collapse.
Details from ArXiV

Shock-driven amorphization and melting in Fe2⁢O3

Physical Review B American Physical Society 111:2 (2025) 024209

Authors:

Celine Crépisson, Alexis Amouretti, Marion Harmand, Chrystele Sanloup, Patrick Heighway, Sam Azadi, David McGonegle, Thomas Campbell, Juan Pintor, David A Chin, Ethan Smith, Linda Hansen, Alessandro Forte, Thomas Gawne, Hae Ja Lee, Bob Nagler, Yuanfeng Shi, Guillaume Fiquet, Francois Guyot, Makita Mikako, Alessandra Bennuzi-Mounaix, Tommaso Vinci, Kohei Miyanishi, Norimasa Ozaki, Tatiana Pikuz, Hirotaka Nakamura, Keiichi Sueda, Toshinori Yabuushi, Makina Yabashi, Justin S Wark, Danae N Polsin, Sam M Vinko

Abstract:

We present measurements on Fe2O3 amorphization and melt under laser-driven shock compression up to 209(10) GPa via time-resolved in situ x-ray diffraction. At 122(3) GPa, a diffuse signal is observed indicating the presence of a noncrystalline phase. Structure factors have been extracted up to 182(6) GPa showing the presence of two well-defined peaks. A rapid change in the intensity ratio of the two peaks is identified between 145(12) and 151(12) GPa, indicative of a phase change. The noncrystalline diffuse scattering is consistent with shock amorphization of Fe2O3 between 122(3) and 145(12) GPa, followed by an amorphous-to-liquid transition above 151(12) GPa. Upon release, a noncrystalline phase is observed alongside crystalline α-Fe2O3. The extracted structure factor and pair distribution function of this release phase resemble those reported for Fe2O3 melt at ambient pressure.
More details from the publisher
Details from ORA
More details

Resonant inelastic x-ray scattering in warm-dense Fe compounds beyond the SASE FEL resolution limit

Communications Physics Nature Research 7:1 (2024) 266

Authors:

Alessandro Forte, Thomas Gawne, Karim K Alaa El-Din, Oliver S Humphries, Thomas R Preston, Céline Crépisson, Thomas Campbell, Pontus Svensson, Sam Azadi, Patrick Heighway, Yuanfeng Shi, David A Chin, Ethan Smith, Carsten Baehtz, Victorien Bouffetier, Hauke Höppner, Alexis Amouretti, David McGonegle, Marion Harmand, Gilbert W Collins, Justin S Wark, Danae N Polsin, Sam M Vinko

Abstract:

Resonant inelastic x-ray scattering (RIXS) is a widely used spectroscopic technique, providing access to the electronic structure and dynamics of atoms, molecules, and solids. However, RIXS requires a narrow bandwidth x-ray probe to achieve high spectral resolution. The challenges in delivering an energetic monochromated beam from an x-ray free electron laser (XFEL) thus limit its use in few-shot experiments, including for the study of high energy density systems. Here we demonstrate that by correlating the measurements of the self-amplified spontaneous emission (SASE) spectrum of an XFEL with the RIXS signal, using a dynamic kernel deconvolution with a neural surrogate, we can achieve electronic structure resolutions substantially higher than those normally afforded by the bandwidth of the incoming x-ray beam. We further show how this technique allows us to discriminate between the valence structures of Fe and Fe2O3, and provides access to temperature measurements as well as M-shell binding energies estimates in warm-dense Fe compounds.
More details from the publisher
Details from ORA
More details

The Xe‐SiO2 System at Moderate Pressure and High Temperature

Geochemistry Geophysics Geosystems American Geophysical Union (AGU) 20:2 (2019) 992-1003

Authors:

C Crépisson, C Sanloup, M Blanchard, J Hudspeth, K Glazyrin, F Capitani
More details from the publisher

The Xe-SiO2 system at Moderate pressure and High temperature conditions.

Geochemistry, Geophysics, Geosystems 20 (2), pp 992-1003.

Authors:

Crépisson C., Sanloup C., Blanchard M., Hudspeth J., Glazyrin K., Capitani F.

Abstract:

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet