Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Michael Cretignier

Postdoctoral Research Assistant

Sub department

  • Astrophysics
  • About
  • Publications

Investigating stellar activity through eight years of Sun-as-a-star observations

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 531:4 (2024) 4238-4262

Authors:

Baptiste Klein, Suzanne Aigrain, Michael Cretignier, Khaled Al Moulla, Xavier Dumusque, Oscar Barragán, Haochuan Yu, Annelies Mortier, Federica Rescigno, Andrew Collier Cameron, Mercedes López-Morales, Nadège Meunier, Alessandro Sozzetti, Niamh K O’Sullivan
More details from the publisher
More details

TOI-837 b is a young Saturn-sized exoplanet with a massive 70 M⊕ core

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 531:4 (2024) 4275-4292

Authors:

Oscar Barragán, Haochuan Yu, Alix Violet Freckelton, Annabella Meech, Michael Cretignier, Annelies Mortier, Suzanne Aigrain, Baptiste Klein, Niamh K O’Sullivan, Edward Gillen, Louise Dyregaard Nielsen, Manuel Mallorquín, Norbert Zicher
More details from the publisher
More details

Trio of super-Earth candidates orbiting K-dwarf HD 48948: a new habitable zone candidate

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 531:4 (2024) 4464-4481

Authors:

S Dalal, F Rescigno, M Cretignier, A Anna John, FZ Majidi, L Malavolta, A Mortier, M Pinamonti, LA Buchhave, RD Haywood, A Sozzetti, X Dumusque, F Lienhard, K Rice, A Vanderburg, B Lakeland, AS Bonomo, A Collier Cameron, M Damasso, L Affer, W Boschin, B Cooke, R Cosentino, L Di Fabrizio, A Ghedina, A Harutyunyan, DW Latham, M López-Morales, C Lovis, AF Martínez Fiorenzano, M Mayor, B Nicholson, F Pepe, M Stalport, S Udry, CA Watson, TG Wilson
More details from the publisher
More details

Measuring precise radial velocities on individual spectral lines

Astronomy & Astrophysics EDP Sciences 683 (2024) a106

Authors:

K Al Moulla, X Dumusque, M Cretignier
More details from the publisher
More details

Modelling stellar variability in archival HARPS data: I - rotation and activity properties with multi-dimensional Gaussian processes

Monthly Notices of the Royal Astronomical Society Oxford University Press 528:4 (2024) 5511-5527

Authors:

Haochuan Yu, Suzanne Aigrain, Baptiste Klein, Oscar Barragán, Annelies Mortier, Niamh K O’Sullivan, Michael Cretignier

Abstract:

Although instruments for measuring the radial velocities (RVs) of stars now routinely reach sub-meter per second accuracy, the detection of low-mass planets is still very challenging. The rotational modulation and evolution of spots and/or faculae can induce variations in the RVs at the level of a few m/s in Sun-like stars. To overcome this, a multi-dimensional Gaussian Process framework has been developed to model the stellar activity signal using spectroscopic activity indicators together with the RVs. A recently published computationally efficient implementation of this framework, S+LEAF 2, enables the rapid analysis of large samples of targets with sizeable data sets. In this work, we apply this framework to HARPS observations of 268 well-observed targets with precisely determined stellar parameters. Our long-term goal is to quantify the effectiveness of this framework to model and mitigate activity signals for stars of different spectral types and activity levels. In this first paper in the series, we initially focus on the activity indicators (S-index and Bisector Inverse Slope), and use them to a) measure rotation periods for 49 slow rotators in our sample, b) explore the impact of these results on the spin-down of middle-aged late F, G & K stars, and c) explore indirectly how the spot to facular ratio varies across our sample. Our results should provide valuable clues for planning future RV planet surveys such as the Terra Hunting Experiment or the PLATO ground-based follow-up observations program, and help fine-tune current stellar structure and evolution models.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet