Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Richard D'Arcy

Associate Professor of Particle Accelerator Physics

Research theme

  • Accelerator physics

Sub department

  • Particle Physics

Research groups

  • Plasma-Wakefield Accelerator Group
richard.darcy@physics.ox.ac.uk
Denys Wilkinson Building, room 618A
  • About
  • Publications

Recovery time of a plasma-wakefield accelerator

Nature Springer Nature 603:7899 (2022) 58-62

Authors:

R D’Arcy, James Chappell, J Beinortaite, S Diederichs, G Boyle, B Foster, Mj Garland, P Gonzalez Caminal, Ca Lindstrøm, G Loisch, S Schreiber, S Schröder, Rj Shalloo, M Thévenet, S Wesch, M Wing, J Osterhoff

Abstract:

The interaction of intense particle bunches with plasma can give rise to plasma wakes capable of sustaining gigavolt-per-metre electric fields, which are orders of magnitude higher than provided by state-of-the-art radio-frequency technology. Plasma wakefields can, therefore, strongly accelerate charged particles and offer the opportunity to reach higher particle energies with smaller and hence more widely available accelerator facilities. However, the luminosity and brilliance demands of high-energy physics and photon science require particle bunches to be accelerated at repetition rates of thousands or even millions per second, which are orders of magnitude higher than demonstrated with plasma-wakefield technology. Here we investigate the upper limit on repetition rates of beam-driven plasma accelerators by measuring the time it takes for the plasma to recover to its initial state after perturbation by a wakefield. The many-nanosecond-level recovery time measured establishes the in-principle attainability of megahertz rates of acceleration in plasmas. The experimental signatures of the perturbation are well described by simulations of a temporally evolving parabolic ion channel, transferring energy from the collapsing wake to the surrounding media. This result establishes that plasma-wakefield modules could be developed as feasible high-repetition-rate energy boosters at current and future particle-physics and photon-science facilities.
More details from the publisher
Details from ORA
More details
More details

A hybrid, asymmetric, linear Higgs factory based on plasma-wakefield and radio-frequency acceleration

New Journal of Physics IOP Publishing 25:9 (2023) 093037

Authors:

B Foster, R D’Arcy, CA Lindstrøm
More details from the publisher

Tunable Plasma-Based Energy Dechirper.

Physical review letters 122:3 (2019) 034801

Authors:

R D'Arcy, S Wesch, A Aschikhin, S Bohlen, C Behrens, MJ Garland, L Goldberg, P Gonzalez, A Knetsch, V Libov, A Martinez de la Ossa, M Meisel, TJ Mehrling, P Niknejadi, K Poder, J-H Röckemann, L Schaper, B Schmidt, S Schröder, C Palmer, J-P Schwinkendorf, B Sheeran, MJV Streeter, G Tauscher, V Wacker, J Osterhoff

Abstract:

A tunable plasma-based energy dechirper has been developed at FLASHForward to remove the correlated energy spread of a 681 MeV electron bunch. Through the interaction of the bunch with wakefields excited in plasma the projected energy spread was reduced from a FWHM of 1.31% to 0.33% without reducing the stability of the incoming beam. The experimental results for variable plasma density are in good agreement with analytic predictions and three-dimensional simulations. The proof-of-principle dechirping strength of 1.8  GeV/mm/m significantly exceeds those demonstrated for competing state-of-the-art techniques and may be key to future plasma wakefield-based free-electron lasers and high energy physics facilities, where large intrinsic chirps need to be removed.
More details from the publisher
More details
More details

FLASHForward: plasma wakefield accelerator science for high-average-power applications.

Philosophical Transactions of the Royal Society A Royal Society 377:2151 (2019) Article:20180392

Authors:

R D'Arcy, A Aschikhin, S Bohlen, G Boyle, T Brümmer, J Chappell, S Diederichs, Brian Foster, MJ Garland, L Goldberg, P Gonzalez, S Karstensen, A Knetsch, P Kuang, V Libov, K Ludwig, A Martinez De La Ossa, F Marutzky, M Meisel, TJ Mehrling, P Niknejadi, K Põder, P Pourmoussavi, M Quast, J-H Röckemann, L Schaper, B Schmidt, S Schröder, J-P Schwinkendorf, B Sheeran, G Tauscher, S Wesch, M Wing, P Winkler, M Zeng, J Osterhoff

Abstract:

The FLASHForward experimental facility is a high-performance test-bed for precision plasma wakefield research, aiming to accelerate high-quality electron beams to GeV-levels in a few centimetres of ionized gas. The plasma is created by ionizing gas in a gas cell either by a high-voltage discharge or a high-intensity laser pulse. The electrons to be accelerated will either be injected internally from the plasma background or externally from the FLASH superconducting RF front end. In both cases, the wakefield will be driven by electron beams provided by the FLASH gun and linac modules operating with a 10 Hz macro-pulse structure, generating 1.25 GeV, 1 nC electron bunches at up to 3 MHz micro-pulse repetition rates. At full capacity, this FLASH bunch-train structure corresponds to 30 kW of average power, orders of magnitude higher than drivers available to other state-of-the-art LWFA and PWFA experiments. This high-power functionality means FLASHForward is the only plasma wakefield facility in the world with the immediate capability to develop, explore and benchmark high-average-power plasma wakefield research essential for next-generation facilities. The operational parameters and technical highlights of the experiment are discussed, as well as the scientific goals and high-average-power outlook.
More details from the publisher
Details from ORA
More details
More details

Proceedings of the Erice workshop: A new baseline for the hybrid, asymmetric, linear Higgs factory HALHF

Physics Open Elsevier 23 (2025) 100261

Authors:

Brian Foster, Erik Adli, Timothy L Barklow, Mikael Berggren, Stewart Boogert, Jian Bin Ben Chen, Richard D’Arcy, Pierre Drobniak, Sinead Farrington, Spencer Gessner, Mark J Hogan, Daniel Kalvik, Antoine Laudrain, Carl A Lindstrøm, Benno List, Jenny List, Xueying Lu, Gudrid Moortgat Pick, Kristjan Põder, Andrei Seryi, Kyrre Sjobak, Maxence Thévenet, Nicholas J Walker, Jonathan Wood
More details from the publisher

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet