Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Amin Doostmohammadi

Visitor - computer account only

Sub department

  • Rudolf Peierls Centre for Theoretical Physics
a.dstmhmdi@gmail.com
Telephone: 01865 (2)73334
Rudolf Peierls Centre for Theoretical Physics
  • About
  • Publications

Active matter invasion of a viscous fluid: Unstable sheets and a no-flow theorem.

Physical review letters 122:9 (2019) 098002

Authors:

Christopher J Miles, Arthur A Evans, Michael J Shelley, Saverio E Spagnolie

Abstract:

We investigate the dynamics of a dilute suspension of hydrodynamically interacting motile or immotile stress-generating swimmers or particles as they invade a surrounding viscous fluid. Colonies of aligned pusher particles are shown to elongate in the direction of particle orientation and undergo a cascade of transverse concentration instabilities, governed at small times by an equation that also describes the Saffman-Taylor instability in a Hele-Shaw cell, or the Rayleigh-Taylor instability in a two-dimensional flow through a porous medium. Thin sheets of aligned pusher particles are always unstable, while sheets of aligned puller particles can either be stable (immotile particles), or unstable (motile particles) with a growth rate that is nonmonotonic in the force dipole strength. We also prove a surprising "no-flow theorem": a distribution initially isotropic in orientation loses isotropy immediately but in such a way that results in no fluid flow everywhere and for all time.
More details from the publisher
More details

Topological states in chiral active matter: Dynamic blue phases and active half-skyrmions

Journal of Chemical Physics American Institute of Physics 150:6 (2019) 064909

Authors:

Luuk Metselaar, Amin Doostmohammadi, Julia Yeomans

Abstract:

We numerically study the dynamics of two-dimensional blue phases in active chiral liquid crystals. We show that introducing contractile activity results in stabilised blue phases, while small extensile activity generates ordered but dynamic blue phases characterised by coherently moving half-skyrmions and disclinations. Increasing extensile activity above a threshold leads to the dissociation of the half-skyrmions and active turbulence. We further analyse isolated active half-skyrmions in an isotropic background and compare the activity-induced velocity fields in simulations to an analytical prediction of the flow. Finally, we show that confining an active blue phase can give rise to a system-wide circulation, in which half-skyrmions and disclinations rotate together.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Emergence of active nematic behavior in monolayers of isotropic cells

Physical Review Letters American Physical Society 122:4 (2019) 048004

Authors:

Romain Mueller, Julia M Yeomans, Amin Doostmohammadi

Abstract:

There is now growing evidence of the emergence and biological functionality of liquid crystal features, including nematic order and topological defects, in cellular tissues. However, how such features that intrinsically rely on particle elongation emerge in monolayers of cells with isotropic shapes is an outstanding question. In this Letter, we present a minimal model of cellular monolayers based on cell deformation and force transmission at the cell-cell interface that explains the formation of topological defects and captures the flow-field and stress patterns around them. By including mechanical properties at the individual cell level, we further show that the instability that drives the formation of topological defects, and leads to active turbulence, emerges from a feedback between shape deformation and active driving. The model allows us to suggest new explanations for experimental observations in tissue mechanics, and to propose designs for future experiments.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Active transport in a channel: stabilisation by flow or thermodynamics

Soft Matter Royal Society of Chemistry 15:7 (2019) 1597-1604

Authors:

Julia Yeomans, S Chandragiri, Amin Doostmohammadi, SP Thampi

Abstract:

Recent experiments on active materials, such as dense bacterial suspensions and microtubule–kinesin motor mixtures, show a promising potential for achieving self-sustained flows. However, to develop active microfluidics it is necessary to understand the behaviour of active systems confined to channels. Therefore here we use continuum simulations to investigate the behaviour of active fluids in a two-dimensional channel. Motivated by the fact that most experimental systems show no ordering in the absence of activity, we concentrate on temperatures where there is no nematic order in the passive system, so that any nematic order is induced by the active flow. We systematically analyze the results, identify several different stable flow states, provide a phase diagram and show that the key parameters controlling the flow are the ratio of channel width to the length scale of active flow vortices, and whether the system is flow aligning or flow tumbling.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Active nematics

Nature Communications Springer Nature 9:2018 (2018) 3246

Authors:

Amin Doostmohammadi, J Ignés-Mullol, Julia Yeomans, F Sagués

Abstract:

Active matter extracts energy from its surroundings at the single particle level and transforms it into mechanical work. Examples include cytoskeleton biopolymers and bacterial suspensions. Here, we review experimental, theoretical and numerical studies of active nematics - a type of active system that is characterised by self-driven units with elongated shape. We focus primarily on microtubule-kinesin mixtures and the hydrodynamic theories that describe their properties. An important theme is active turbulence and the associated motile topological defects. We discuss ways in which active turbulence may be controlled, a pre-requisite to harvesting energy from active materials, and we consider the appearance, and possible implications, of active nematics and topological defects to cellular systems and biological processes.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet