Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Anthony Dyson

Postdoctoral Research Assistant

Sub department

  • Atomic and Laser Physics
anthony.dyson@physics.ox.ac.uk
Telephone: 01865 (2)72214,01865 (2)72301
  • About
  • Publications

Suppression of pair beam instabilities in a laboratory analogue of blazar pair cascades

Proceedings of the National Academy of Sciences National Academy of Sciences 122:45 (2025) e2513365122

Authors:

Charles Arrowsmith, Francesco Miniati, Pablo J Bilbao, Pascal Simon, Archie Bott, Stephane Burger, Hui Chen, Filipe D Cruz, Tristan Davenne, Anthony Dyson, Ilias Efthymiopoulos, Dustin H Froula, Alice Goillot, Jon T Gudmundsson, Dan Haberberger, Jack WD Halliday, Thomas Hodge, Brian T Huffman, Sam Iaquinta, G Marshall, Brian Reville, Subir Sarkar, Alexander Schekochihin, Luis O Silva, Raspberry Simpson, Vasiliki Stergiou, Raoul MGM Trines, Thibault Vieu, Nikolaos Charitonidis, Robert Bingham, Gianluca Gregori

Abstract:

The generation of dense electron-positron pair beams in the laboratory can enable direct tests of theoretical models of γ-ray bursts and active galactic nuclei. We have successfully achieved this using ultrarelativistic protons accelerated by the Super Proton Synchrotron at (CERN). In the first application of this experimental platform, the stability of the pair beam is studied as it propagates through a meter-length plasma, analogous to TeV γ-ray-induced pair cascades in the intergalactic medium. It has been argued that pair beam instabilities disrupt the cascade, thus accounting for the observed lack of reprocessed GeV emission from TeV blazars. If true, this would remove the need for a moderate strength intergalactic magnetic field to explain the observations. We find that the pair beam instability is suppressed if the beam is not perfectly collimated or monochromatic, hence the lower limit to the intergalactic magnetic field inferred from γ-ray observations of blazars is robust.
More details from the publisher
Details from ORA
More details

Generating ultradense pair beams using 400 GeV/c protons

Physical Review Research American Physical Society 3 (2021) 023103

Authors:

CD Arrowsmith, N Shukla, N Charitonidis, R Boni, H Chen, T Davenne, Anthony Dyson, Dh Froula, JT Gudmundsson, Brian Huffman, Y Kadi, B Reville, S Richardson, S Sarkar, Jl Shaw, Lo Silva, P Simon, Rmgm Trines, R Bingham, G Gregori

Abstract:

An experimental scheme is presented for generating low-divergence, ultradense, relativistic, electron-positron beams using 400 GeV/c protons available at facilities such as HiRadMat and AWAKE at CERN. Preliminary Monte Carlo and particle-in-cell simulations demonstrate the possibility of generating beams containing 1013–1014 electron-positron pairs at sufficiently high densities to drive collisionless beam-plasma instabilities, which are expected to play an important role in magnetic field generation and the related radiation signatures of relativistic astrophysical phenomena. The pair beams are quasineutral, with size exceeding several skin depths in all dimensions, allowing the examination of the effect of competition between transverse and longitudinal instability modes on the growth of magnetic fields. Furthermore, the presented scheme allows for the possibility of controlling the relative density of hadrons to electron-positron pairs in the beam, making it possible to explore the parameter spaces for different astrophysical environments.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet