Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Dr Niamh Fearon

PDRA

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Particle Physics

Research groups

  • LUX-ZEPLIN
niamh.fearon@physics.ox.ac.uk
Inspire HEP profile
  • About
  • Publications

Projected sensitivities of the LUX-ZEPLIN experiment to new physics via low-energy electron recoils

Phys.Rev.D 104 (2021) 9, 092009

Authors:

D.S. Akerib, A.K. Al Musalhi, S.K. Alsum, C.S. Amarasinghe, A. Ames, T.J. Anderson, N. Angelides, H.M. Araújo, J.E. Armstrong, M. Arthurs, X. Bai, J. Balajthy, S. Balashov, J. Bang, J.W. Bargemann, D. Bauer, A. Baxter, P. Beltrame, E.P. Bernard, A. Bernstein, A. Bhatti, A. Biekert, T.P. Biesiadzinski, H.J. Birch, G.M. Blockinger, E. Bodnia, B. Boxer, C.A.J. Brew, P. Brás, S. Burdin, J.K. Busenitz, M. Buuck, R. Cabrita, M.C. Carmona-Benitez, M. Cascella, C. Chan, N.I. Chott, A. Cole, M.V. Converse, A. Cottle, G. Cox, O. Creaner, J.E. Cutter, C.E. Dahl, L. de Viveiros, J.E.Y. Dobson, E. Druszkiewicz, S.R. Eriksen, A. Fan, S. Fayer, N.M. Fearon, S. Fiorucci, H. Flaecher, E.D. Fraser, T. Fruth, R.J. Gaitskell, J. Genovesi, C. Ghag, E. Gibson, S. Gokhale, M.G.D. van der Grinten, C.B. Gwilliam, C.R. Hall, C.A. Hardy, S.J. Haselschwardt, S.A. Hertel, M. Horn, D.Q. Huang, C.M. Ignarra, O. Jahangir, R.S. James, W. Ji, J. Johnson, A.C. Kaboth, A.C. Kamaha, K. Kamdin, K. Kazkaz, D. Khaitan, A. Khazov, I. Khurana, D. Kodroff, L. Korley, E.V. Korolkova, H. Kraus, S. Kravitz, L. Kreczko, B. Krikler, V.A. Kudryavtsev, E.A. Leason, J. Lee, D.S. Leonard, K.T. Lesko, C. Levy, J. Li, J. Liao, A. Lindote, R. Linehan, W.H. Lippincott, X. Liu , M.I. Lopes, E. Lopez Asamar, B. López Paredes, W. Lorenzon, S. Luitz, P.A. Majewski, A. Manalaysay, L. Manenti, R.L. Mannino, N. Marangou, M.E. McCarthy, D.N. McKinsey, J. McLaughlin, E.H. Miller, E. Mizrachi, A. Monte, M.E. Monzani, J.A. Morad, J.D. Morales Mendoza, E. Morrison, B.J. Mount, A.St.J. Murphy, D. Naim, A. Naylor, C. Nedlik, H.N. Nelson, F. Neves, J.A. Nikoleyczik, A. Nilima, A. Nguyen, I. Olcina, K.C. Oliver-Mallory, S. Pal, K.J. Palladino, J. Palmer, S. Patton, N. Parveen, E.K. Pease, B. Penning, G. Pereira, A. Piepke, Y. Qie, J. Reichenbacher, C.A. Rhyne, A. Richards, Q. Riffard, G.R.C. Rischbieter, R. Rosero, P. Rossiter, D. Santone, A.B.M.R. Sazzad, R.W. Schnee, P.R. Scovell, S. Shaw, T.A. Shutt, J.J. Silk, C. Silva, R. Smith, M. Solmaz, V.N. Solovov, P. Sorensen, J. Soria, I. Stancu, A. Stevens, K. Stifter, B. Suerfu, T.J. Sumner, N. Swanson, M. Szydagis, W.C. Taylor, R. Taylor, D.J. Temples, P.A. Terman, D.R. Tiedt, M. Timalsina, W.H. To, D.R. Tovey, M. Tripathi, D.R. Tronstad, W. Turner, U. Utku, A. Vaitkus, B. Wang, J.J. Wang, W. Wang, J.R. Watson, R.C. Webb, R.G. White, T.J. Whitis, M. Williams, F.L.H. Wolfs, D. Woodward, C.J. Wright, X. Xiang, J. Xu, M. Yeh, P. Zarzhitsky

Abstract:

LUX-ZEPLIN is a dark matter detector expected to obtain world-leading sensitivity to weakly-interacting massive particles interacting via nuclear recoils with a ∼7-tonne xenon target mass. This paper presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic moment, and 2) an effective neutrino millicharge, both for pp-chain solar neutrinos, 3) an axion flux generated by the Sun, 4) axionlike particles forming the Galactic dark matter, 5) hidden photons, 6) mirror dark matter, and 7) leptophilic dark matter. World-leading sensitivities are expected in each case, a result of the large 5.6 t 1000 d exposure and low expected rate of electron-recoil backgrounds in the <100  keV energy regime. A consistent signal generation, background model and profile-likelihood analysis framework is used throughout.
More details from the publisher
Full PDF text

Enhancing the sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment to low energy signals

arXiv preprint

Authors:

D.S. Akerib, A.K. Al Musalhi, S.K. Alsum, C.S. Amarasinghe, A. Ames, T.J. Anderson, N. Angelides, H.M. Araújo, J.E. Armstrong, M. Arthurs, X. Bai, J. Balajthy, S. Balashov, J. Bang, J.W. Bargemann, D. Bauer, A. Baxter, P. Beltrame, E.P. Bernard, A. Bernstein, A. Bhatti, A. Biekert, T.P. Biesiadzinski, H.J. Birch, G.M. Blockinger, B. Boxer, C.A.J. Brew, P. Brás, S. Burdin, J.K. Busenitz, M. Buuck, R. Cabrita, M.C. Carmona-Benitez, M. Cascella, C. Chan, N.I. Chott, A. Cole, M.V. Converse, A. Cottle, G. Cox, J.E. Cutter, C.E. Dahl, L. de Viveiros, J.E.Y. Dobson, E. Druszkiewicz, S.R. Eriksen, A. Fan, S. Fayer, N.M. Fearon, S. Fiorucci, H. Flaecher, E.D. Fraser, T. Fruth, R.J. Gaitskell, J. Genovesi, C. Ghag, E. Gibson, S. Gokhale, M.G.D. van der Grinten, C.B. Gwilliam, C.R. Hall, S.J. Haselschwardt, S.A. Hertel, M. Horn, D.Q. Huang, C.M. Ignarra, O. Jahangir, R.S. James, W. Ji, J. Johnson, A.C. Kaboth, A.C. Kamaha, K. Kamdin, K. Kazkaz, D. Khaitan, A. Khazov, I. Khurana, D. Kodroff, L. Korley, E.V. Korolkova, H. Kraus, S. Kravitz, L. Kreczko, B. Krikler, V.A. Kudryavtsev, E.A. Leason, K.T. Lesko, C. Levy, J. Li, J. Liao, J. Lin, A. Lindote, R. Linehan, W.H. Lippincott, X. Liu, M.I. Lopes, E. Lopez Asamar, B. López Paredes, W. Lorenzon, S. Luitz , P.A. Majewski, A. Manalaysay, L. Manenti, R.L. Mannino, N. Marangou, M.E. McCarthy, D.N. McKinsey, J. McLaughlin, E.H. Miller, E. Mizrachi, A. Monte, M.E. Monzani, J.A. Morad, J.D. Morales Mendoza, E. Morrison, B.J. Mount, A.St.J. Murphy, D. Naim, A. Naylor, C. Nedlik, H.N. Nelson, F. Neves, J.A. Nikoleyczik, I. Olcina, K.C. Oliver-Mallory, S. Pal, K.J. Palladino, J. Palmer, N. Parveen, E.K. Pease, B. Penning, G. Pereira, A. Piepke, Y. Qie, J. Reichenbacher, C.A. Rhyne, A. Richards, Q. Riffard, G.R.C. Rischbieter, R. Rosero, P. Rossiter, D. Santone, A.B.M.R. Sazzad, R.W. Schnee, P.R. Scovell, S. Shaw, T.A. Shutt, J.J. Silk, C. Silva, R. Smith, M. Solmaz, V.N. Solovov, P. Sorensen, I. Stancu, A. Stevens, K. Stifter, B. Suerfu, T.J. Sumner, N. Swanson, M. Szydagis, W.C. Taylor, R. Taylor, D.J. Temples, P.A. Terman, D.R. Tiedt, M. Timalsina, W.H. To, M. Tripathi, D.R. Tronstad, W. Turner, U. Utku, A. Vaitkus, B. Wang, J.J. Wang, W. Wang, J.R. Watson, R.C. Webb, R.G. White, T.J. Whitis, M. Williams, F.L.H. Wolfs, D. Woodward, C.J. Wright, X. Xiang, J. Xu, M. Yeh, P. Zarzhitsky

Abstract:

Two-phase xenon detectors, such as that at the core of the forthcoming LZ dark matter experiment, use photomultiplier tubes to sense the primary (S1) and secondary (S2) scintillation signals resulting from particle interactions in their liquid xenon target. This paper describes a simulation study exploring two techniques to lower the energy threshold of LZ to gain sensitivity to low-mass dark matter and astrophysical neutrinos, which will be applicable to other liquid xenon detectors. The energy threshold is determined by the number of detected S1 photons; typically, these must be recorded in three or more photomultiplier channels to avoid dark count coincidences that mimic real signals. To lower this threshold: a) we take advantage of the double photoelectron emission effect, whereby a single vacuum ultraviolet photon has a ∼20% probability of ejecting two photoelectrons from a photomultiplier tube photocathode; and b) we drop the requirement of an S1 signal altogether, and use only the ionization signal, which can be detected more efficiently. For both techniques we develop signal and background models for the nominal exposure, and explore accompanying systematic effects, including the dependence on the free electron lifetime in the liquid xenon. When incorporating double photoelectron signals, we predict a factor of ∼4 sensitivity improvement to the dark matter-nucleon scattering cross-section at 2.5 GeV/c2, and a factor of ∼1.6 increase in the solar 88B neutrino detection rate. Dropping the S1 requirement may allow sensitivity gains of two orders of magnitude in both cases. Finally, we apply these techniques to even lower masses by taking into account the atomic Migdal effect; this could lower the dark matter particle mass threshold to 80 MeV/c2.
Details from ArXiV

Rapid destruction of protoplanetary discs due to external photoevaporation in star-forming regions

Monthly Notices of the Royal Astronomical Society 485:4 (2019) 4893–4905

Authors:

Rhana B Nicholson, Richard J Parker, Ross P Church, Melvyn B Davies, Niamh M Fearon, Sam R J Walton

Abstract:

We analyse N-body simulations of star-forming regions to investigate the effects of external far- and extreme-ultraviolet photoevaporation from massive stars on protoplanetary discs. By varying the initial conditions of simulated star-forming regions, such as the spatial distribution, net bulk motion (virial ratio), and density, we investigate which parameters most affect the rate at which discs are dispersed due to external photoevaporation. We find that disc dispersal due to external photoevaporation is faster in highly substructured star-forming regions than in smooth and centrally concentrated regions. Subvirial star-forming regions undergoing collapse also show higher rates of disc dispersal than regions that are in virial equilibrium or are expanding. In moderately dense (∼100 M⊙ pc−3) regions, half of all protoplanetary discs with radii ≥100 au are photoevaporated within 1 Myr, three times faster than is currently suggested by observational studies. Discs in lower density star-forming regions (∼10 M⊙ pc−3) survive for longer, but half are still dispersed on short time-scales (∼2 Myr). This demonstrates that the initial conditions of the star-forming regions will greatly impact the evolution and lifetime of protoplanetary discs. These results also imply that either gas giant planet formation is extremely rapid and occurs before the gas component of discs is  evaporated, or gas giants only form in low-density star-forming regions where no massive stars are present to photoevaporate gas from protoplanetary discs.
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet