Dynamical friction from scalar dark matter in the relativistic regime
arXiv (2021)
Abstract:
Light bosonic scalars (e.g. axions) may form clouds around black holes via superradiant instabilities, or via accretion if they form some component of the dark matter. It has been suggested that their presence may lead to a distinctive dephasing of the gravitational wave signal when a small compact object spirals into a larger black hole. Motivated by this, we study numerically the dynamical friction force on a black hole moving at relativistic velocities in a background scalar field with an asymptotically homogeneous energy density. We show that the relativistic scaling is analogous to that found for supersonic collisional fluids, assuming an approximate expression for the pressure correction which depends on the velocity and scalar mass. While we focus on a complex scalar field, our results confirm the expectation that real scalars would exert a force which oscillates between positive and negative values in time with a frequency set by the scalar mass. The complex field describes the time averaged value of this force, but in a real scalar the rapid force oscillations could in principle leave an imprint on the trajectory. The approximation we obtain can be used to inform estimates of dephasing in the final stages of an extreme mass ratio inspiral.Euclid preparation: IX. EuclidEmulator2 – power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 505:2 (2021) 2840-2869
Quasinormal modes of growing dirty black holes
Physical Review D American Physical Society 103:12 (2021)
Abstract:
The ringdown of a perturbed black hole contains fundamental information about space-time in the form of quasinormal modes (QNM). Modifications to general relativity, or extended profiles of other fields surrounding the black hole, so called "black hole hair", can perturb the QNM frequencies. Previous works have examined the QNM frequencies of spherically symmetric "dirty"black holes; that is black holes surrounded by arbitrary matter fields. Such analyses were restricted to static systems, making the assumption that the metric perturbation was independent of time. However, in most physical cases such black holes will actually be growing dynamically due to accretion of the surrounding matter. Here we develop a perturbative analytic method that allows us to compute for the first time the time dependent QNM deviations of such growing dirty black holes. Whilst both are small, we show that the change in QNM frequency due to the accretion can be of the same order or larger than the change due to the static matter distribution itself, and therefore should not be neglected in such calculations. We present the case of spherically symmetric accretion of a complex scalar field as an illustrative example, but the method has the potential to be extended to more complicated cases.The growth of density perturbations in the last $\sim$10 billion years from tomographic large-scale structure data
(2021)
Inertial spontaneous symmetry breaking and quantum scale invariance
Physical Review D: Particles, Fields, Gravitation and Cosmology American Physical Society (2021)