Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Pedro Ferreira

Professor of Astrophysics

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
pedro.ferreira@physics.ox.ac.uk
Telephone: 01865 (2)73366
Denys Wilkinson Building, room 757
Personal Webpage
  • About
  • Publications

Theoretical priors in scalar-tensor cosmologies: Shift-symmetric Horndeski models

(2021)

Authors:

Dina Traykova, Emilio Bellini, Pedro G Ferreira, Carlos García-García, Johannes Noller, Miguel Zumalacárregui
More details from the publisher
Details from ArXiV

Calibrating galaxy formation effects in galactic tests of fundamental physics

(2021)

Authors:

Deaglan J Bartlett, Harry Desmond, Pedro G Ferreira
More details from the publisher

Euclid preparation: XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography

Astronomy and Astrophysics EDP Sciences 647 (2021) A117

Authors:

O Ilbert, S De La Torre, N Martinet, Pedro Ferreira

Abstract:

The analysis of weak gravitational lensing in wide-field imaging surveys is considered to be a major cosmological probe of dark energy. Our capacity to constrain the dark energy equation of state relies on an accurate knowledge of the galaxy mean redshift ⟨z⟩. We investigate the possibility of measuring ⟨z⟩ with an accuracy better than 0.002 (1 + z) in ten tomographic bins spanning the redshift interval 0.2 < z < 2.2, the requirements for the cosmic shear analysis of Euclid. We implement a sufficiently realistic simulation in order to understand the advantages and complementarity, as well as the shortcomings, of two standard approaches: the direct calibration of ⟨z⟩ with a dedicated spectroscopic sample and the combination of the photometric redshift probability distribution functions (zPDFs) of individual galaxies. We base our study on the Horizon-AGN hydrodynamical simulation, which we analyse with a standard galaxy spectral energy distribution template-fitting code. Such a procedure produces photometric redshifts with realistic biases, precisions, and failure rates. We find that the current Euclid design for direct calibration is sufficiently robust to reach the requirement on the mean redshift, provided that the purity level of the spectroscopic sample is maintained at an extremely high level of > 99.8%. The zPDF approach can also be successful if the zPDF is de-biased using a spectroscopic training sample. This approach requires deep imaging data but is weakly sensitive to spectroscopic redshift failures in the training sample. We improve the de-biasing method and confirm our finding by applying it to real-world weak-lensing datasets (COSMOS and KiDS+VIKING-450).
More details from the publisher
Details from ORA
More details

Cosmic shear power spectra in practice

Journal of Cosmology and Astroparticle Physics 2021:3 (2021)

Authors:

A Nicola, C García-García, D Alonso, J Dunkley, Pg Ferreira, A Slosar, Dn Spergel

Abstract:

Cosmic shear is one of the most powerful probes of Dark Energy, targeted by several current and future galaxy surveys. Lensing shear, however, is only sampled at the positions of galaxies with measured shapes in the catalog, making its associated sky window function one of the most complicated amongst all projected cosmological probes of inhomogeneities, as well as giving rise to inhomogeneous noise. Partly for this reason, cosmic shear analyses have been mostly carried out in real-space, making use of correlation functions, as opposed to Fourier-space power spectra. Since the use of power spectra can yield complementary information and has numerical advantages over real-space pipelines, it is important to develop a complete formalism describing the standard unbiased power spectrum estimators as well as their associated uncertainties. Building on previous work, this paper contains a study of the main complications associated with estimating and interpreting shear power spectra, and presents fast and accurate methods to estimate two key quantities needed for their practical usage: the noise bias and the Gaussian covariance matrix, fully accounting for survey geometry, with some of these results also applicable to other cosmological probes. We demonstrate the performance of these methods by applying them to the latest public data releases of the Hyper Suprime-Cam and the Dark Energy Survey collaborations, quantifying the presence of systematics in our measurements and the validity of the covariance matrix estimate. We make the resulting power spectra, covariance matrices, null tests and all associated data necessary for a full cosmological analysis publicly available.
More details from the publisher
Details from ORA
More details
Details from ArXiV

The quasi normal modes of growing dirty black holes

(2021)

Authors:

Jamie Bamber, Oliver J Tattersall, Katy Clough, Pedro G Ferreira
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet