Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Pedro Ferreira

Professor of Astrophysics

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
pedro.ferreira@physics.ox.ac.uk
Telephone: 01865 (2)73366
Denys Wilkinson Building, room 757
Personal Webpage
  • About
  • Publications

The effect on cosmological parameter estimation of a parameter dependent covariance matrix

(2018)

Authors:

Darsh Kodwani, David Alonso, Pedro Ferreira
More details from the publisher

The fifth force in the local cosmic web

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 483:1 (2018) L64-L68

Authors:

Harry Desmond, Pedro Ferreira, G Lavaux, J Jasche

Abstract:

Extensions of the standard models of particle physics and cosmology often lead to long-range fifth forces with properties dependent on gravitational environment. Fifth forces on astrophysical scales are best studied in the cosmic web where perturbation theory breaks down. We present constraints on chameleon- and symmetron-screened fifth forces with Yukawa coupling and megaparsec range – as well as unscreened fifth forces with differential coupling to galactic mass components – by searching for the displacements they predict between galaxies’ stars and gas. Taking data from the AlfalfaH I survey, identifying galaxies’ gravitational environments with the maps of Desmond et al. and forward modelling with a Bayesian likelihood framework, we set upper bounds on fifth-force strength relative to Newtonian gravity from ∼few × 10−4 (1σ) for range λC = 50 Mpc, to ∼0.1 for λC = 500 kpc. In f(R) gravity this requires fR0 ≲ few × 10−8. The analogous bounds without screening are ∼few × 10−4 and few × 10−3. These are the tightest and among the only fifth-force constraints on galaxy scales. We show how our results may be strengthened with future survey data and identify the key features of an observational programme for furthering fifth-force tests beyond the Solar system.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Fifth force constraints from galaxy warps

Physical Review D American Physical Society 98:8 (2018) 083010

Authors:

Harry Desmond, Pedro Ferreira, G Lavaux, J Jasche

Abstract:

Intragalaxy signals contain a wealth of information on fundamental physics, both the dark sector and the nature of gravity. While so far largely unexplored, such probes are set to rise dramatically in importance as upcoming surveys provide data of unprecedented quantity and quality on galaxy structure and dynamics. In this paper, we use warping of stellar disks to test the chameleon- or symmetron-screened fifth forces which generically arise when new fields couple to matter. We take r -band images of mostly late-type galaxies from the Nasa Sloan Atlas and develop an automated algorithm to quantify the degree of U-shaped warping they exhibit. We then forward model the warp signal as a function of fifth-force strength, ΔG/GN, and range, λC, and the gravitational environments and internal properties of the galaxies, including full propagation of the non-Gaussian uncertainties. Convolving this fifth-force likelihood function with a Gaussian describing astrophysical and observational noise and then constraining ΔG/GN and λC by Markov chain Monte Carlo, we find the overall likelihood to be significantly increased (Δlog(L)≃20) by adding a screened fifth force with λC≃2 Mpc and ΔG/GN≃0.01. The variation of Δlog(L) with λC is quantitatively as expected from the correlation of the magnitude of the fifth-force field with the force’s range, and a similar model without screening achieves no increase in likelihood over the General Relativistic case ΔG=0. Although these results are in good agreement with a previous analysis of the same model using offsets between galaxies’ stellar and gas mass centroids [H. Desmond et al., Phys. Rev. D 98, 064015 (2018).], we caution that the effects of confounding baryonic and dark matter physics must be thoroughly investigated for the results of the inference to be unambiguous.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Fifth force constraints from the separation of galaxy mass components

Physical Review D American Physical Society 98:6 (2018)

Authors:

Harry Desmond, Pedro Ferreira, G Lavaux, J Jasche

Abstract:

One of the most common consequences of extensions to the standard models of particle physics or cosmology is the emergence of a fifth force. While generic fifth forces are tightly constrained at Solar System scales and below, they may escape detection by means of a screening mechanism which effectively removes them in dense environments. We constrain the strength ΔG/GN and range λC of a fifth force with Yukawa coupling arising from a chameleon- or symmetron-screened scalar field—as well as an unscreened fifth force with differential coupling to galactic mass components—by searching for the displacement it predicts between galaxies’ stellar and gas mass centroids. Taking data from the Alfalfa survey of neutral atomic hydrogen (HI), identifying galaxies’ gravitational environments with the maps of [H. Desmond, P. G. Ferreira, G. Lavaux, and J. Jasche, Mon. Not. R. Astron. Soc. 474, 3152 (2018)] and forward modeling with a Bayesian likelihood framework, we find, with screening included, 6.6σ evidence for ΔG>0 at λC≃2Mpc. The maximum-likelihood ΔG/GN is 0.025. A similar fifth force model without screening gives no increase in likelihood over the case ΔG=0 for any λC. Although we validate this result by several methods, we do not claim screened modified gravity to provide the only possible explanation for the data: this conclusion would require knowing that the signal could not be produced by “galaxy formation” physics. We show also the results of a more conservative—though less well-motivated—noise model which yields only upper limits on ΔG/GN, ranging from ∼10−1 for λC ≃ 0.5 Mpc to ∼ few ×10−4 at λC ≃ 50 Mpc. Corresponding models without screening receive the somewhat stronger bounds ∼ few ×10−3 and ∼ few ×104 respectively. We show how these constraints may be improved by future galaxy surveys and identify the key features of an observational program for directly constraining fifth forces on scales beyond the Solar System. This paper provides a complete description of the analysis summarized in [H. Desmond, P. G. Ferreira, G. Lavaux, and J. Jasche, arXiv:1802.07206].
More details from the publisher
Details from ORA
More details
Details from ArXiV

Fifth force constraints from galaxy warps

(2018)

Authors:

Harry Desmond, Pedro G Ferreira, Guilhem Lavaux, Jens Jasche
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • Current page 29
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet