Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Pedro Ferreira

Professor of Astrophysics

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
pedro.ferreira@physics.ox.ac.uk
Telephone: 01865 (2)73366
Denys Wilkinson Building, room 757
Personal Webpage
  • About
  • Publications

Fifth force constraints from the separation of galaxy mass components

Physical Review D American Physical Society 98:6 (2018)

Authors:

Harry Desmond, Pedro Ferreira, G Lavaux, J Jasche

Abstract:

One of the most common consequences of extensions to the standard models of particle physics or cosmology is the emergence of a fifth force. While generic fifth forces are tightly constrained at Solar System scales and below, they may escape detection by means of a screening mechanism which effectively removes them in dense environments. We constrain the strength ΔG/GN and range λC of a fifth force with Yukawa coupling arising from a chameleon- or symmetron-screened scalar field—as well as an unscreened fifth force with differential coupling to galactic mass components—by searching for the displacement it predicts between galaxies’ stellar and gas mass centroids. Taking data from the Alfalfa survey of neutral atomic hydrogen (HI), identifying galaxies’ gravitational environments with the maps of [H. Desmond, P. G. Ferreira, G. Lavaux, and J. Jasche, Mon. Not. R. Astron. Soc. 474, 3152 (2018)] and forward modeling with a Bayesian likelihood framework, we find, with screening included, 6.6σ evidence for ΔG>0 at λC≃2Mpc. The maximum-likelihood ΔG/GN is 0.025. A similar fifth force model without screening gives no increase in likelihood over the case ΔG=0 for any λC. Although we validate this result by several methods, we do not claim screened modified gravity to provide the only possible explanation for the data: this conclusion would require knowing that the signal could not be produced by “galaxy formation” physics. We show also the results of a more conservative—though less well-motivated—noise model which yields only upper limits on ΔG/GN, ranging from ∼10−1 for λC ≃ 0.5 Mpc to ∼ few ×10−4 at λC ≃ 50 Mpc. Corresponding models without screening receive the somewhat stronger bounds ∼ few ×10−3 and ∼ few ×104 respectively. We show how these constraints may be improved by future galaxy surveys and identify the key features of an observational program for directly constraining fifth forces on scales beyond the Solar System. This paper provides a complete description of the analysis summarized in [H. Desmond, P. G. Ferreira, G. Lavaux, and J. Jasche, arXiv:1802.07206].
More details from the publisher
Details from ORA
More details
Details from ArXiV

Fifth force constraints from galaxy warps

(2018)

Authors:

Harry Desmond, Pedro G Ferreira, Guilhem Lavaux, Jens Jasche
More details from the publisher

Polarization of a stochastic gravitational wave background through diffusion by massive structures

(2018)

Authors:

Giulia Cusin, Ruth Durrer, Pedro G Ferreira
More details from the publisher

Fifth force constraints from the separation of galaxy mass components

(2018)

Authors:

Harry Desmond, Pedro G Ferreira, Guilhem Lavaux, Jens Jasche
More details from the publisher

Emergent dark energy from dark matter

PHYSICAL REVIEW D 97:12 (2018) ARTN 121301

Authors:

Takeshi Kobayashi, Pedro G Ferreira
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • Current page 30
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet