Towards a fully consistent parametrization of modified gravity
Physical Review D - Particles, Fields, Gravitation and Cosmology 84:12 (2011)
Abstract:
There is a distinct possibility that current and future cosmological data can be used to constrain Einstein's theory of gravity on the very largest scales. To be able to do this in a model-independent way, it makes sense to work with a general parameterization of modified gravity. Such an approach would be analogous to the Parameterized Post-Newtonian (PPN) approach which is used on the scale of the Solar System. A few such parameterizations have been proposed and preliminary constraints have been obtained. We show that the majority of such parameterizations are only exactly applicable in the quasistatic regime. On larger scales they fail to encapsulate the full behavior of typical models currently under consideration. We suggest that it may be possible to capture the additions to the 'Parameterized Post-Friedmann' (PPF) formalism by treating them akin to fluid perturbations. © 2011 American Physical Society.Erratum: Archipelagian cosmology: Dynamics and observables in a universe with discretized matter content [Phys. Rev. D 80, 103503 (2009)]
Physical Review D American Physical Society (APS) 84:10 (2011) 109902
Power Spectrum Estimation from Peculiar Velocity Catalogues
ArXiv 1111.3338 (2011)
Abstract:
The peculiar velocities of galaxies are an inherently valuable cosmological probe, providing an unbiased estimate of the distribution of matter on scales much larger than the depth of the survey. Much research interest has been motivated by the high dipole moment of our local peculiar velocity field, which suggests a large scale excess in the matter power spectrum, and can appear to be in some tension with the LCDM model. We use a composite catalogue of 4,537 peculiar velocity measurements with a characteristic depth of 33 h-1 Mpc to estimate the matter power spectrum. We compare the constraints with this method, directly studying the full peculiar velocity catalogue, to results from Macaulay et al. (2011), studying minimum variance moments of the velocity field, as calculated by Watkins, Feldman & Hudson (2009) and Feldman, Watkins & Hudson (2010). We find good agreement with the LCDM model on scales of k > 0.01 h Mpc-1. We find an excess of power on scales of k < 0.01 h Mpc-1, although with a 1 sigma uncertainty which includes the LCDM model. We find that the uncertainty in the excess at these scales is larger than an alternative result studying only moments of the velocity field, which is due to the minimum variance weights used to calculate the moments. At small scales, we are able to clearly discriminate between linear and nonlinear clustering in simulated peculiar velocity catalogues, and find some evidence (although less clear) for linear clustering in the real peculiar velocity data.FIRST SEASON QUIET OBSERVATIONS: MEASUREMENTS OF COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRA AT 43 GHz IN THE MULTIPOLE RANGE 25 ⩽ ⩽ 475
The Astrophysical Journal American Astronomical Society 741:2 (2011) 111