Evolutionary patterns at the RNase based gametophytic self - incompatibility system in two divergent Rosaceae groups (Maloideae and Prunus).
BMC evolutionary biology 10 (2010) 200
Abstract:
Background
Within Rosaceae, the RNase based gametophytic self-incompatibility (GSI) system has been studied at the molecular level in Maloideae and Prunus species that have been diverging for, at least, 32 million years. In order to understand RNase based GSI evolution within this family, comparative studies must be performed, using similar methodologies.Result
It is here shown that many features are shared between the two species groups such as levels of recombination at the S-RNase (the S-pistil component) gene, and the rate at which new specificities arise. Nevertheless, important differences are found regarding the number of ancestral lineages and the degree of specificity sharing between closely related species. In Maloideae, about 17% of the amino acid positions at the S-RNase protein are found to be positively selected, and they occupy about 30% of the exposed protein surface. Positively selected amino acid sites are shown to be located on either side of the active site cleft, an observation that is compatible with current models of specificity determination. At positively selected amino acid sites, non-conservative changes are almost as frequent as conservative changes. There is no evidence that at these sites the most drastic amino acid changes may be more strongly selected.Conclusions
Many similarities are found between the GSI system of Prunus and Maloideae that are compatible with the single origin hypothesis for RNase based GSI. The presence of common features such as the location of positively selected amino acid sites and lysine residues that may be important for ubiquitylation, raise a number of issues that, in principle, can be experimentally addressed in Maloideae. Nevertheless, there are also many important differences between the two Rosaceae GSI systems. How such features changed during evolution remains a puzzling issue.Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control.
Nature cell biology 12:5 (2010) 447-456
Abstract:
Meiotic and early-embryonic cell divisions in vertebrates take place in the absence of transcription and rely on the translational regulation of stored maternal messenger RNAs. Most of these mRNAs are regulated by the cytoplasmic-polyadenylation-element-binding protein (CPEB), which mediates translational activation and repression through cytoplasmic changes in their poly(A) tail length. It was unknown whether translational regulation by cytoplasmic polyadenylation and CPEB can also regulate mRNAs at specific points of mitotic cell-cycle divisions. Here we show that CPEB-mediated post-transcriptional regulation by phase-specific changes in poly(A) tail length is required for cell proliferation and specifically for entry into M phase in mitotically dividing cells. This translational control is mediated by two members of the CPEB family of proteins, CPEB1 and CPEB4. We conclude that regulation of poly(A) tail length is not only required to compensate for the lack of transcription in specialized cell divisions but also acts as a general mechanism to control mitosis.The linear growth rate of structure in Parametrized Post Friedmannian Universes
(2010)
The linear growth rate of structure in Parametrized Post Friedmannian Universes
ArXiv 1003.4231 (2010)