Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Pedro Ferreira

Professor of Astrophysics

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
pedro.ferreira@physics.ox.ac.uk
Telephone: 01865 (2)73366
Denys Wilkinson Building, room 757
Personal Webpage
  • About
  • Publications

New horizons for fundamental physics with LISA

Living Reviews in Relativity Springer 25:1 (2022) 4

Authors:

Kg Arun, Enis Belgacem, Robert Benkel, Laura Bernard, Emanuele Berti, Gianfranco Bertone, Marc Besancon, Diego Blas, Christian G Bohmer, Richard Brito, Gianluca Calcagni, Alejandro Cardenas-Avendano, Katy Clough, Marco Crisostomi, Valerio De Luca, Daniela Doneva, Stephanie Escoffier, Jose Maria Ezquiaga, Pedro G Ferreira, Pierre Fleury, Stefano Foffa, Gabriele Franciolini, Noemi Frusciante, Juan Garcia-Bellido, Carlos Herdeiro, Thomas Hertog, Tanja Hinderer, Philippe Jetzer, Lucas Lombriser, Elisa Maggio, Michele Maggiore, Michele Mancarella, Andrea Maselli, Sourabh Nampalliwar, David Nichols, Maria Okounkova, Paolo Pani, Vasileios Paschalidis, Alvise Raccanelli, Lisa Randall, Sebastien Renaux-Petel, Antonio Riotto, Milton Ruiz, Alexander Saffer, Mairi Sakellariadou, Ippocratis D Saltas, Bs Sathyaprakash, Lijing Shao, Carlos F Sopuerta, Thomas P Sotiriou

Abstract:

The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundamental physics where LISA observations of gravitational waves can be expected to provide key input. We provide the briefest of reviews to then delineate avenues for future research directions and to discuss connections between this working group, other working groups and the consortium work package teams. These connections must be developed for LISA to live up to its science potential in these areas.
More details from the publisher
Details from ORA
More details
More details

Where is the ringdown? Reconstructing quasinormal modes from dispersive waves

(2022)

Authors:

Josu C Aurrekoetxea, Pedro G Ferreira, Katy Clough, Eugene A Lim, Oliver J Tattersall
More details from the publisher
Details from ArXiV

Model-independent constraints on Ωm and H(z) from the link between geometry and growth

Monthly Notices of the Royal Astronomical Society Oxford University Press 512:2 (2022) 1967-1984

Authors:

Jaime Ruiz-Zapatero, Carlos Garcia-Garcia, David Alonso, Pedro G Ferreira, Richard DP Grumitt

Abstract:

We constrain the expansion history of the Universe and the cosmological matter density fraction in a model-independent way by exclusively making use of the relationship between background and perturbations under a minimal set of assumptions. We do so by employing a Gaussian process to model the expansion history of the Universe from present time to the recombination era. The expansion history and the cosmological matter density are then constrained using recent measurements from cosmic chronometers, Type-Ia supernovae, baryon acoustic oscillations, and redshift-space distortion data. Our results show that the evolution in the reconstructed expansion history is compatible with the Planck 2018 prediction at all redshifts. The current data considered in this study can constrain a Gaussian process on H(z) to an average 9.4 per cent precision across redshift. We find Ωm = 0.224 ± 0.066, lower but statistically compatible with the Planck 2018 cosmology. Finally, the combination of future DESI measurements with the CMB measurement considered in this work holds the promise of 8 per cent average constraints on a model-independent expansion history as well as a five-fold tighter Ωm constraint using the methodology developed in this work.

More details from the publisher
Details from ORA
More details
More details

Testing gravity on cosmic scales: a case study of Jordan-Brans-Dicke theory

Physical Review D American Physical Society 105:4 (2022) 43522

Authors:

Shahab Joudaki, Pedro G Ferreira, Nelson A Lima, Hans A Winther

Abstract:

We provide an end-to-end exploration of a distinct modified gravitational theory in Jordan-Brans-Dicke (JBD) gravity, from an analytical and numerical description of the background expansion and linear perturbations, to the nonlinear regime captured with a hybrid suite of N-body simulations, to the cosmological constraints from existing probes of the expansion history, the large-scale structure, and the cosmic microwave background (CMB). We have focused on JBD gravity as it both approximates a wider class of Horndeski scalar-tensor theories on cosmological scales and allows us to adequately model the nonlinear corrections to the matter power spectrum. In a combined analysis of the Planck 2018 CMB temperature, polarization, and lensing reconstruction, together with Pantheon supernova distances and the Baryon Oscillation Spectroscopic Survey (BOSS) measurements of baryon acoustic oscillation distances, the Alcock-Paczynski effect, and the growth rate, we constrain the JBD coupling constant to ωBD>970 (95% confidence level; C.L.) in agreement with the General Relativistic expectation given by ωBD→∞. In the unrestricted JBD model, where the effective gravitational constant at present, Gmatter/G, is additionally varied, increased dataset concordance (e.g., within 1σ agreement in S8=σ8ωm/0.3) enables us to further include the combined ("3×2pt") dataset of cosmic shear, galaxy-galaxy lensing, and overlapping redshift-space galaxy clustering from the Kilo Degree Survey and the 2-degree Field Lensing Survey (KiDS×2dFLenS). In analyzing the weak lensing measurements, the nonlinear corrections due to baryons, massive neutrinos, and modified gravity are simultaneously modeled and propagated in the cosmological analysis for the first time. In the joint analysis of all datasets, we constrain ωBD>1540 (95% C.L.), Gmatter/G=0.997±0.029, the sum of neutrino masses, mν<0.12 eV (95% C.L.), and the baryonic feedback amplitude, B<2.8 (95% CL), all in agreement with the standard model expectation. In fixing the sum of neutrino masses, the lower bound on the coupling constant strengthens to ωBD>1460 and ωBD>2230 (both at 95% C.L.) in the restricted and unrestricted JBD models, respectively. We explore the impact of the JBD modeling choices, and show that a more restrictive parametrization of the coupling constant degrades the neutrino mass bound by up to a factor of three. In addition to the improved concordance between KiDS×2dFLenS and Planck, the tension in the Hubble constant between Planck and the direct measurement of Riess et al. (2019) is reduced to ∼3σ; however, we find no substantial model selection preference for JBD gravity relative to ΛCDM. We further show that a positive shift in the effective gravitational constant suppresses the CMB damping tail, which might complicate future inferences of small-scale physics, given its degeneracy with the primordial helium abundance, the effective number of neutrinos, and the running of the spectral index.
More details from the publisher
Details from ORA
More details

Model-independent constraints on $\Omega_m$ and $H(z)$ from the link between geometry and growth

(2022)

Authors:

Jaime Ruiz-Zapatero, Carlos García-García, David Alonso, Pedro G Ferreira, Richard DP Grumitt
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Current page 9
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet