Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Pedro Ferreira

Professor of Astrophysics

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
pedro.ferreira@physics.ox.ac.uk
Telephone: 01865 (2)73366
Denys Wilkinson Building, room 757
Personal Webpage
  • About
  • Publications

syren-new: Precise formulae for the linear and nonlinear matter power spectra with massive neutrinos and dynamical dark energy

(2024)

Authors:

Ce Sui, Deaglan J Bartlett, Shivam Pandey, Harry Desmond, Pedro G Ferreira, Benjamin D Wandelt
More details from the publisher
Details from ArXiV

Scant evidence for thawing quintessence

Physical Review D American Physical Society (APS) 110:8 (2024) 083528

Authors:

William J Wolf, Carlos García-García, Deaglan J Bartlett, Pedro G Ferreira
More details from the publisher
More details

Euclid: Constraining linearly scale-independent modifications of gravity with the spectroscopic and photometric primary probes★

Astronomy & Astrophysics EDP Sciences 690 (2024) ARTN A133

Authors:

N Frusciante, F Pace, Vf Cardone, S Casas, I Tutusaus, M Ballardini, E Bellini, G Benevento, B Bose, P Valageas, N Bartolo, P Brax, Pg Ferreira, F Finelli, K Koyama, L Legrand, L Lombriser, D Paoletti, M Pietroni, A Rozas-Fernández, Z Sakr, A Silvestri, F Vernizzi, Ha Winther, N Aghanim, L Amendola, N Auricchio, R Azzollini, M Baldi, D Bonino, E Branchini, M Brescia, J Brinchmann, S Camera, V Capobianco, C Carbone, J Carretero, M Castellano, S Cavuoti, A Cimatti, R Cledassou, G Congedo, L Conversi, Y Copin, L Corcione, F Courbin, M Cropper, A Da Silva, H Degaudenzi, J Dinis

Abstract:

Context. The future Euclid space satellite mission will offer an invaluable opportunity to constrain modifications to Einstein's general relativity at cosmic scales. In this paper, we focus on modified gravity models characterised, at linear scales, by a scale-independent growth of perturbations while featuring different testable types of derivative screening mechanisms at smaller non-linear scales. Aims. We considered three specific models, namely Jordan-Brans-Dicke, a scalar-tensor theory with a flat potential, the normal branch of Dvali-Gabadadze-Porrati (nDGP) gravity, a braneworld model in which our Universe is a four-dimensional brane embedded in a five-dimensional Minkowski space-time, and k-mouflage gravity, an extension of k-essence scenarios with a universal coupling of the scalar field to matter. In preparation for real data, we provide forecasts from spectroscopic and photometric primary probes by Euclid on the cosmological parameters and the additional parameters of the models, respectively, ΩBD, ΩCyrillic small letter GHEc and ϵ2,0, which quantify the deviations from general relativity. This analysis will improve our knowledge of the cosmology of these modified gravity models. Methods. The forecast analysis employs the Fisher matrix method applied to weak lensing (WL); photometric galaxy clustering (GCph), spectroscopic galaxy clustering (GCsp) and the cross-correlation (XC) between GCph and WL. For the Euclid survey specifications, we define three scenarios that are characterised by different cuts in the maximum multipole and wave number, to assess the constraining power of non-linear scales. For each model we considered two fiducial values for the corresponding model parameter. Results. In an optimistic setting at 68.3% confidence interval, we find the following percentage relative errors with Euclid alone: for log10 ΩBD, with a fiducial value of ΩBD = 800, 27.1% using GCsp alone, 3.6% using GCph+WL+XC and 3.2% using GCph+WL+XC+GCsp; for log10 ΩCyrillic small letter GHEc, with a fiducial value of ΩCyrillic small letter GHEc = 0.25, we find 93.4, 20 and 15% respectively; and finally, for ϵ2,0 = -0.04, we find 3.4%, 0.15%, and 0.14%. From the relative errors for fiducial values closer to their ∇CDM limits, we find that most of the constraining power is lost. Our results highlight the importance of the constraining power from non-linear scales.
More details from the publisher
More details

Self-interacting scalar dark matter around binary black holes

Physical Review D American Physical Society (APS) 110:8 (2024) 83011

Authors:

Josu C Aurrekoetxea, James Marsden, Katy Clough, Pedro G Ferreira

Abstract:

Gravitational waves can provide crucial insights about the environments in which black holes live. In this work, we use numerical relativity simulations to study the behavior of self-interacting scalar (wavelike) dark matter clouds accreting onto isolated and binary black holes. We find that repulsive self-interactions smoothen the "spike"of an isolated black hole and saturate the density. Attractive self-interactions enhance the growth and result in more cuspy profiles, but can become unstable and undergo explosions akin to the superradiant bosenova that reduce the local cloud density. We quantify the impact of self-interactions on an equal-mass black hole merger by computing the dephasing of the gravitational-wave signal for a range of couplings. We find that repulsive self-interactions saturate the density of the cloud, thereby reducing the dephasing. For attractive self-interactions, the dephasing may be larger, but if these interactions dominate prior to the merger, the dark matter can undergo bosenova during the inspiral phase, disrupting the cloud and subsequently reducing the dephasing.
More details from the publisher
More details

Euclid preparation

Astronomy & Astrophysics EDP Sciences 690 (2024) ARTN A30

Authors:

F Dournac, A Blanchard, S Ilić, B Lamine, I Tutusaus, A Amara, S Andreon, N Auricchio, H Aussel, M Baldi, S Bardelli, C Bodendorf, D Bonino, E Branchini, S Brau-Nogue, M Brescia, J Brinchmann, S Camera, V Capobianco, J Carretero, S Casas, M Castellano, S Cavuoti, A Cimatti, G Congedo, Cj Conselice, L Conversi, Y Copin, F Courbin, Hm Courtois, A Da Silva, H Degaudenzi, Am Di Giorgio, J Dinis, M Douspis, F Dubath, X Dupac, S Dusini, A Ealet, M Farina, S Farrens, S Ferriol, M Frailis, E Franceschi, S Galeotta, W Gillard, B Gillis, C Giocoli, Br Granett, A Grazian

Abstract:

Future data provided by the Euclid mission will allow us to better understand the cosmic history of the Universe. A metric of its performance is the figure-of-merit (FoM) of dark energy, usually estimated with Fisher forecasts. The expected FoM has previously been estimated taking into account the two main probes of Euclid, namely the three-dimensional clustering of the spectroscopic galaxy sample, and the so-called 3×2pt signal from the photometric sample (i.e., the weak lensing signal, the galaxy clustering, and their cross-correlation). So far, these two probes have been treated as independent. In this paper, we introduce a new observable given by the ratio of the (angular) two-point correlation function of galaxies from the two surveys. For identical (normalised) selection functions, this observable is unaffected by sampling noise, and its variance is solely controlled by Poisson noise. We present forecasts for Euclid where this multi-tracer method is applied and is particularly relevant because the two surveys will cover the same area of the sky. This method allows for the exploitation of the combination of the spectroscopic and photometric samples. When the correlation between this new observable and the other probes is not taken into account, a significant gain is obtained in the FoM, as well as in the constraints on other cosmological parameters. The benefit is more pronounced for a commonly investigated modified gravity model, namely the γ parametrisation of the growth factor. However, the correlation between the different probes is found to be significant and hence the actual gain is uncertain. We present various strategies for circumventing this issue and still extract useful information from the new observable.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet