X-ray spectroscopy for the magnetic study of the van der Waals ferromagnet CrSiTe3 in the few- and monolayer limit
Abstract:
The study of magnetic order in few- and monolayer van der Waals materials poses a challenge to the most commonly employed magnetic characterization techniques as they normally lack magnetic sensitivity and/or lateral resolution enabling their thickness-dependent probing. Here we demonstrate the usefulness of x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements, carried out at the Cr L2,3 and Te M5 edges, for the study of the ferromagnetic semiconductor CrSiTe3 (CST) in the form of single- and few-layer flakes. By scanning the sample under the incident x-ray beam, a map of the exfoliated system was obtained, which reproduced the optical micrographs showing the detailed distribution and thicknesses of the flakes. In this way, XAS/XMCD was performed at selected sample areas, revealing the thickness-resolved spectroscopic and magnetic properties of the flakes, such as the spin and orbital magnetic moments. The spin moment, in line with the saturation field, is decreasing with film thickness, revealing a single-domain and out-of-plane magnetization for the thinnest films. For CST, the electronic properties are governed by the strong covalent bond between the Cr 3d(eg ) and Te 5p states, giving rise to a superexchange scenario. We observed a gradually increasing ratio of orbital to spin moment for thinner flakes, which could be due to a further increase of the covalent mixing. Hysteresis loops were recorded at the Cr L3 edge, showing an open loop for 10 down to ∼3 layers, while the bulk shows a wasp-waist shaped loop. With the transition temperature from the soft to the hard ferromagnetic state decreasing with thickness, the monolayer shows a narrowed, closed loop at 10 K, suggesting its transition temperature >10 K. Our study demonstrates the unique capabilities of XAS/XMCD for the study of few-layer van der Waals magnets, highlighting the interplay between electron correlation and ferromagnetism in CST.
Critical analysis of proximity-induced magnetism in MnTe / Bi2 Te3 heterostructures
Abstract:
An elegant approach to overcome the intrinsic limitations of magnetically doped topological insulators is to bring a topological insulator in direct contact with a magnetic material. The aspiration is to realize the quantum anomalous Hall effect at high temperatures where the symmetry-breaking magnetic field is provided by a proximity-induced magnetization at the interface. Hence, a detailed understanding of the interfacial magnetism in such heterostructures is crucial, yet its distinction from structural and magnetic background effects is a rather nontrivial task. Here, we combine several magnetic characterization techniques to investigate the magnetic ordering inCovalent mixing in the two-dimensional ferromagnet CrSiTe₃ evidenced by magnetic x-ray circular dichroism
Abstract:
The low-temperature electronic structure of the van der Waals ferromagnet CrSiTe3 has been investigated. This ferromagnetic semiconductor has a magnetic bulk transition temperature of 33 K, which can reach up to 80 K in single- and few-layer flakes. X-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements, carried out at the Cr L2,3 and Te Mb edges on in vacuo cleaved single crystals, give strong evidence for hybridization-mediated super-exchange between the Cr atoms. The observed chemical shift in the XAS, as well as the comparison of the XMCD with the calculated Cr L2,3 multiplet spectra, confirm a strongly covalent bond between the Cr 3d(eg) and Te 5p states. Application of the XMCD sum rules gives a non-vanishing orbital moment, supporting a partial occupation of the eg states, apart from the t2g. Also, the presence of a non-zero XMCD signal at the Te Mb edge confirms a Te 5p spin polarization due to mixing with the Cr eg bonding states. The results strongly suggest that superexchange, instead of the previously suggested single ion anisotropy, is responsible for the low-temperature ferromagnetic ordering of 2D materials such as CrSiTe3 and CrGeTe3. This demonstrates the interplay between electron correlation and ferromagnetism in insulating two-dimensional materials.